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Abstract

We prove that Runge-Kutta (RK) methods for numerical integration of arbitrar-
ily large systems of Ordinary Differential Equations are linearly stable. Standard
stability arguments — based on spectral analysis, resolvent condition or strong
stability, fail to secure the stability of RK methods for arbitrarily large systems.
We explain the failure of different approaches, offer a new stability theory based
on the numerical range of the underlying large matrices involved in such sys-
tems, and demonstrate its application with concrete examples of RK stability for
hyperbolic methods of lines.
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1 Introduction

Runge-Kutta (RK) methods are widely used class of effective methods for nu-
merical integration of systems of Ordinary Differential Equations (ODEs). In par-
ticular, such methods are used routinely for integration of large systems of ODEs
encountered in various applications. As examples we mention RK integration of
large systems of ODEs in molecular dynamics in Chemistry, in many particle sys-
tems in Physics, in climate modeling, in cosmology and in spatial discretization
of time-dependent PDEs which end up with increasingly large systems of ODEs,
so-called “method of lines”. In recent years such problems also arise in integration
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of high-dimensional data sets/neural networks, e.g., [HR2017, E2017, CRBD2018,
Mis2018].

1.1 An informal summary of main results
The stability of RK methods encoded in terms of their region of absolute stabil-

ity is well documented, [HNW1993, Ise1996, But2008]. We therefore begin with
an informal summary of our results, clarifying the claim made in the title.

We consider linear systems of ODEs, ẏ = LN y, associated with a general class
of N×N semi-bounded matrices, LN , and a RK method associated with the polyno-
mial, P(z) = ∑

s
k=0 akzk. The RK method is stable if its computed solution evolved

in time, remains comparable to the size of the (initial) data, uniformly in the num-
ber of time steps, n, and the size of the underlying system, N. Thus, the linearized
stability of the RK method in the present context requires

‖Pn(∆tLN )‖6 KL, n = 1,2, . . . ,

with a constant KL independent of n and N. This leads to the classical stability
criterion which requires the time-step ∆t to be small enough so that

∆tσ(LN )⊂A .

Here, σ(LN ) is the spectrum of LN and A = {z ∈C : |P(z)|6 1} is the region of
absolute stability associated with the RK method under consideration. This classi-
cal framework of stability suffices for systems of finite size but fails for arbitrarily
large systems. There is an extensive literature, going back to the 1980’s, which
tried to secure a uniform-in-N stability bound by adapting alternative notions of re-
solvent stability or strong stability. We discuss the failure of different approaches
in §1.2 and further elaborate in §2 below. Alternatively, there were different ap-
proaches to secure the uniform-in-N stability bound for restricted classes of LN’s,
satisfying different coercivity restrictions. We mention the SSP theory which ne-
cessitates ∆tσ(LN ) ⊂ {z : |1 + z| 6 1}, [GST2001] (see §3.4 below), and the
wedge condition, ∆tσ(LN )⊂A ∩{z : |argz|> π−α} with α < π/2, [SS1997].
The uniform-in-N stability question for general semi-bounded LN’s remained open.
This is addressed in our first main result in theorem 4.2 below, stating that if

∆tW (LN )⊂A ,

then stability follows with uniformly bounded KL. Here, W (LN ) = {〈LN x,x〉 :
|x|= 1} is the numerical range of LN (associated with general inner product 〈·, ·〉;
consult §3.1 below). Concrete examples for applications of this RK stability re-
sult are given in §5, in the context of methods of lines for hyperbolic transport
equations, where we recover classical old results and derive some new ones. In
this case, we explicitly compute W (LN ) for circulant or almost circulant matrices.
But in general, the structure of W (LN ) as a set in the complex plane is not as ac-
cessible as the discrete spectrum σ(LN ). This is addressed in our second main
theorem 4.4. Consider RK method whose region of absolute stability contains a
non-trivial interval along the imaginary axis, A ⊃ [−iR, iR]. Then, there exists
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a constant C > 0 (depending on R) so that the CFL-like condition ∆t‖LN‖ 6 C
implies ∆tW (LN )⊂A , and uniform-in-N stability follows.

1.2 The quest for stability
We consider systems of ODEs,

ẏ = F(t,y),

which govern an N-vector of unknown solution, y(t) ∈ RN , subject to prescribed
initial data, y(t0) = y0. As a canonical example for one of the most widely used
numerical integrators we mention the 4-stage RK method, which computes an
approximate solution, {un = u(tn)}n>0, at successive time steps tn+1 := tn +∆t,
[HNW1993, §II.1],

un+1 = un +
∆t
6
(
k1 +2k2 +2k3+k4

) 
k1 = F(tn,un)
k2 = F

(
tn+1/2,un +(∆t/2)k1

)
k3 = F

(
tn+1/2,un +(∆t/2)k2

)
k4 = F

(
tn+1,un +∆tk3

)
.

(1.1)

The linearized stability analysis examines the behavior of (1.1) for linear systems,
F(t,y) = LN y,

(1.2) ẏ = LN y,

where (1.1) is reduced to

un+1 =

(
I+∆tLN +

1
2
(∆tLN )

2 +
1
6
(∆tLN )

3+
1
24

(∆tLN )
4
)

un,

n = 0,1, . . . .
(RK4)

The corresponding iterations for a general s-stage explicit RK method take the form

un+1 = Ps(∆tLN )un, n = 0,1,2, . . . , Ps(z) :=
s

∑
k=0

akzk, ak ∈ R, as 6= 0.(1.3)

Different {ak}s
k=0 dictate different RK methods with emphasis on different aspects

of accuracy, efficiency and stability. The resulting s-stage RK methods, (1.3), in-
volve N×N matrices, denoted LN to highlight the fact that they are parameterized
with respect to N. As already noted above, such large matrices are often encoun-
tered in applications, and we therefore pay particular attention to the question of
RK stability that is uniform with respect to the increasingly large dimension N.

Following [Tad2002, §2], we consider (1.2) for the class of semi-bounded LN’s,
namely — LN’s for which there exist constants η ,KH > 0 independent of N, and
uniformly positive-definite symmetrizers, HN’s, such that1 ,

HNL
>
N
+LNHN 6 2ηHN , 0 < K−1

H 6HN 6 KH.

1 Throughout the paper, we use K� to denote different constants which are independent of N.
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It follows that the solutions of the corresponding semi-bounded ODEs (1.2) subject
to arbitrary initial data y(0) = y0, satisfy

|y(t)|`2 6 KHeηt |y0|`2 .

Replacing LN with LN−ηI, allows us to consider without loss of generality the
case η = 0, corresponding to negative definite LN’s,

(1.4) HNL
>
N
+LNHN 6 0, 0 < K−1

H 6HN 6 KH.

Solutions of ODE governed by such negative2 LN’s remain uniformly bounded in
time relative to their initial data y0,

(1.5) |y(t)|
`2
6 KH|y0|`2 .

Stability of RK scheme. The notion of stability of RK schemes requires the nu-
merical solution to satisfy the bound corresponding to (1.5). To this end, one is fo-
cused on a family of negative LN’s parametrized by their dimension N. The s-stage
RK scheme (1.3) is stable, if there exist constants, KL > 0 and Cs > 0 independent
of N, such that solutions of (1.3) subject to arbitrary initial data u0 satisfy, for small
enough time step ∆t,

(1.6) Stability of RK scheme : |un|`2 6 KL|u0|`2 , n = 0,1,2, . . . .

The restriction of having small enough time step is encoded in terms of the bound

(1.7) ∆t · ‖LN‖6 Cs;

in the context of method of lines, the time-step restriction is related to the cele-
brated Courant-Friedrichs-Levy (CFL) condition, [CFL1928], and we shall there-
fore often refer to the time-step restriction (1.7) as a CFL condition.
The notion of stability encoded in (1.6) amounts to the question of power-boundedness
of Ps(∆tLN ),

(1.8) ‖Pn
s (∆tLN )‖6 KL, n = 0,1,2, . . . .

Remark 1.1 (Stability and linearization). The general notion of stability for semi-
bounded LN’s, limits the exponential stability bound to a finite time interval,

|un|`2 6 KLeηt |u0|`2 , n ·∆t 6 t.

Since we restrict attention to negative LN’s, we may as well let n ∈ N. This notion
of stability is invariant against low-order perturbations, [Kre1962],[Str1964], and
therefore allows to recover the stability of RK schemes for smooth solutions of
fully nonlinear problems, ẏ = F(t,y). To this end, one can linearize and freeze
coefficients at arbitrary t = t∗, arriving at the linearized system (1.2),

ẏ = LN y with LN =
∂F
(
t∗,y(t∗)

)
∂y

.

2 Throughout the work, we use the term ‘negative’ for short of ‘negative definite’.
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We shall not dwell on the details, expect for referring to our discussion on stability
in presence of variable coefficients in §5.2 below. This motivates our focus on the
question of linearized stability, where LN is a substitute for the N ×N gradient
matrix frozen at arbitrary state.

1.3 Spectral stability analysis
The standard approach to address the question of power-boundedness is spec-

tral analysis, in which (1.8) requires max
16k6N

|λk
(
Ps(∆tLN )

)
| 6 1. By the spectral

mapping theorem,

(1.9) λk
(
Ps(∆tLN )

)
= Ps

(
∆tλk(LN )

)
,

which leads to the necessary stability condition, requiring small enough time-step
dictated by the region of absolute stability associated with (1.3),

(1.10) ∆t ·λk(LN ) ∈As, k = 1,2, . . . ,N, As := {z ∈ C : |Ps(z)|6 1}.
Conversely, consider the favorite scenario in which LN is diagonalizable,

TNLNT
−1
N = Λ, Λ =



λ1(LN ) 0 . . . . . . 0

0 λ2(LN )
. . .

...
...

. . . . . .
...

...
. . . . . . . . . 0

0 . . . . . . 0 λN(LN )

 .

Then Ps(∆tLN ) = T−1
N Ps(∆tΛ)TN and (1.10) implies

(1.11) ‖Pn
s (∆tLN )‖= ‖T−1

N Pn
s (∆tΛ)TN‖6 ‖T−1

N ‖ · ‖TN‖.
This guarantees the stability of RK schemes for systems of finite fixed dimension3 .
However, here we insist that the stability sought in (1.6) will apply uniformly for
increasingly large systems, and since the condition number on the right of (1.11),
‖T−1

N ‖ · ‖TN‖, may grow with N, spectral condition (1.10) is not enough to secure
the desired uniform-in-N stability bound. Indeed, as we elaborate in §2.1 below,
the general question of stability, uniformly in N, cannot be addressed solely in
terms of spectral analysis.

1.4 Resolvent stability
We now appeal to a stronger notion of stability of RK method. An s-stage RK

method Ps(·) is stable if the corresponding RK schemes (1.3) are stable for all
negative LN’s,

(1.12) Stability of RK method : ‖Pn
s (∆tLN )‖6 KL for all negative LN’s.

3 The precise necessary and sufficient characterization for power-boundedness of a single matrix,
‖Pn‖6 K, requires that the eigenvalues λk(P) are inside the unit disc and those on the unit circle
are simple or non defective in the sense of having fully diagonalizable eigenspace; the constant K
may still depend on the dimension of P .
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Observe that we are making a distinction between the stability of RK scheme —
which examines the boundedness of RK protocol Pn

s (∆tLN ) for a specific family
of negative LN’s, vs. the stability of RK method — which examines the behavior of
RK protocol Pn

s (∆t ·), for all negative LN’s.
This stronger notion of stability restricts the class of stable RK methods. In

particular, their stability question should apply to the scalar ODEs, ẏ = λy, for all
negative Re λ 6 0, which in turn implies that (1.10) must hold for purely imaginary
λ = iσ , so that |Ps(i∆tσ)|6 1, for small enough step-size, ∆t. In other words, a
stable RK method must satisfy the following interval condition.

Definition 1.2 (Imaginary Interval condition4 ). A Runge-Kutta method is said
to satisfy the imaginary interval condition if there exists a constant Rs > 0 such
that

(1.13) |Ps(iσ)|6 1, −Rs 6 σ 6 Rs.

In other words, the region of absolute stability of a stable RK method must con-
tain a non-trivial interval along the imaginary axis [−iRs, iRs] ⊂ As. This secures
the stability of RK method for scalar hyperbolic ODEs, ẏ = iσy, with small enough
step-size ∆tσ < Rs.

The interval condition excludes the standard 1-stage forward Euler method (for
historical perspective of Euler’s method which dates back to 1768 see [Wan2010,
§1]),

(RK1) Forward Euler : un+1 = (I+∆tLN )un,

for which P1(z) = 1+ z ; |P1(iσ)| > 1 for all σ 6= 0. The imaginary interval
condition (1.13) also excludes the 2-stage Heun’s method [DB1974, §8.3.3] (also
known as modified Euler method),

(RK2) Heun method : un+1 =

(
I+∆tLN +

1
2
(∆tLN )

2
)

un,

since P2(z) = 1+ z+ 1
2 z2 ; |P2(iσ)|> 1 for all σ 6= 0.

On the other hand, the 3-stage Kutta method,

(RK3) Kutta method : un+1 =

(
I+∆tLN +

1
2
(∆tLN )

2 +
1
6
(∆tLN )

3
)

un,

as well as the 4-stage Runge-Kutta method, (RK4), and its higher-order embed-
ded version RK45 of Dormand-Prince method [DP1980, KS1992, HNW1993], do
satisfy the interval condition with R3 =

√
3, and respectively, R4 = 2

√
2; this is

depicted in figure 1.1. A precise characterization of general s-stage RK methods
satisfying the interval condition was given in [KS1992, Theorem 3.1] and will be
recalled in (4.8b) below.

4 So-called “local stability along the imaginary line” in [KS1992, Definition 2.1].
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FIGURE 1.1. Regions of absolute stability, As, s = 1,2 (left) and s = 3,4 (right)

The interval condition 1.2 is necessary for stability of a RK method. Kreiss & Wu,
[KW1993], proved the converse in the sense that the interval condition is sufficient
for resolvent stability, namely — (1.13) implies that the following holds.

Definition 1.3 (Resolvent stability). The RK method is resolvent stable if there
exist constants KR > 0 and 0 < Cs < Rs, independent of N, such that for small
step-size,

(1.14) ‖
(
zI−Ps(∆tLN )

)−1‖6 KR

|z|−1
, ∀|z|> 1, ∆t · ‖LN‖6 Cs.

So the interval condition implies resolvent stability which in turn guarantees
the stability of RK schemes for systems of finite fixed dimension, in view of the
Kreiss matrix theorem, [Kre1962], [RM1967, §4.9]. Indeed, in [Tad1981] and its
improvement [LT1984], it was proved that (1.14) implies

(1.15) ‖Pn
s (∆tLN )‖6 2eKRN, n = 1,2, . . . .

However, as we shall elaborate in §2.2 below, the N-dependent bound on the right
cannot be completely removed and hence resolvent stability does not secure the
desired stability uniformly for arbitrarily large N.

1.5 Strong stability
A Runge-Kutta scheme (1.3) is strongly stable if there exists KT > 0 indepen-

dent of N such that Ps(∆tLN ) is uniformly similar to a contraction,

(1.16) ‖TN Ps(∆tLN )T
−1

N
‖6 1, ‖T −1

N
‖ · ‖TN‖6 KT .

A strongly stable RK scheme is clearly stable, for

(1.17) ‖Pn
s (∆tLN )‖= ‖T −1

N

(
TN Ps(∆tLN )T

−1
N

)n
TN‖6 ‖T −1

N
‖ ·‖TN‖6 KT
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The choice TN = TN recovers (1.11) as a special case of (1.17).
To secure strong stability it remains to construct a uniformly bounded symmetrizer
HN := T ∗

N
TN with 0 < K−1

T 6HN 6 KT . We addressed this issue in [Tad2002],
proving the strong stability of the 3-stage RK method (RK3) with symmetrizer
HN = HN and C3 = 1, thus providing the first example of a RK method which is
stable uniformly for arbitrarily large system of ODEs. It was later extended to all
s-stage RK methods of order s = 3[mod4], [SS2019]. The question arises whether
strong stability can be extended using proper symmetrizers, HN , for other s-stage
RK methods for arbitrary s? In [Tad2002] we conjectured that the 4-stage (RK4)
fails strong stability in the sense that it is not uniformly similar to a contraction,
or equivalently — as outlined in §2.3 below, that there is no symmetrizer HN :=
T ∗

N
TN such that (1.16)s=4 holds. This was confirmed in [SS2017, Proposition 1.1]

and was later extended in [AAJ2023, Theorem 2], where it was shown that strong
stability fails for all s-stage p-order accurate5 RK methods with s = r ∈ 4N.

Remark 1.4. In fact, the issue of RK4 stability is more subtle as ‖P2n
s (∆tLN )‖6 1,

which can be interpreted to say that the 8-stage RK4 is strongly stable. We refer
the interested reader to [SS2017, SS2019] and the references therein.

The stability question for RK schemes. We come out from the above discussion,
lacking a definitive answer to the question of stability of RK schemes/methods for
arbitrarily large systems of ODEs. Thus, for example, the stability question for
the widely used RK4 remains open. At this stage, the three different approaches
— spectral analysis, resolvent condition and strong stability failed to determine
whether RK4 method for example, is stable uniformly in N for the general class of
negative LN ’s. We therefore raise the question:

Are the Runge-Kutta methods (1.3) stable for arbitrarily large semi-
bounded systems?

The title of the paper is an affirmative answer to this question. The answer is given
in §4 in terms of the numerical range of LN .

2 Spectral, resolvent and strong stability analysis are not enough

In this section, we further elaborate with specific counterexamples, on the fail-
ure of spectral analysis, resolvent condition and strong stability to capture the
uniform-in-N stability of general s-stage RK schemes/methods. Spectral and re-
solvent analysis are shown to be too weak to secure stability, while strong stability
argument is too restrictive.

5 The RK method (1.3) is r-order accurate if |ez−Ps(z)| = O
(
|z|r+1), |z| � 1; see (4.8a) below.

Thus, r is the largest index for which ak = 1/k! for k = 1,2, . . . ,r.
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2.1 Spectral analysis is not enough
We recall the spectral analysis led to the necessary stability condition (1.10)

∆t ·λk(LN )⊂As, k = 1,2, . . . ,N.

As noted above, this spectral condition is not sufficient to secure stability in case of
ill-conditioned eigensystems, ‖T−1

N ‖ · ‖TN‖, which grows with N. An alternative
approach, trying to circumvent this difficulty of ill-condtioning is to use a unitary
triangulation

Ps(∆tLN ) = U∗
N

(
ΛP +RN

)
UN , ΛP := Ps(∆tΛ),

where Λ and ΛP are the diagonals made of the eigenvalues of LN and, respectively,
Ps(∆tLN ), and RN is a nilpotent upper triangular matrix, (RN )i j = 0, j 6 i. Since
‖Pn

s (∆tLN )‖ = ‖(ΛP +RN )
n‖, it remains to study the power-boundedness of the

triangular matrix ΛP +RN . But we claim that even a most favorable scenario, in
which the spectral stability analysis (1.10) secures the eigenvalues strictly inside
the unit disc,

(2.1) θ := max
16k6N

|Ps
(
∆tλk(LN )

)
|< 1,

will not suffice to guarantee the stability of RK method. Indeed, we may assume
without restriction that RN is arbitrarily small by its further re-scaling6 , so that

‖SδRN S−1
δ
‖=‖{Ri jδ

i− j
ε } j>i‖6 ε,

Sδ =


δε 0 . . . 0

0 δ 2
ε

. . .
...

...
. . . . . .

...
0 . . . . . . δ N

ε

 , δε :=
ε

‖RN‖F
.

Here, an arbitrary ε > 0 is at our disposal to be determined below. It follows that

‖Pn
s (∆tLN )‖= ‖U∗N S−1

δ

(
ΛP +SδRN S−1

δ

)nSδUN‖6 ‖S−1
δ
‖×(‖ΛP‖+ε)n×‖Sδ‖.

By assumption, ‖ΛP‖ = θ < 1. Set ε := 1/2(1− θ), we then end up with the
stability bound

(2.2) ‖Pn
s (∆tLN )‖6 δ

1−N
ε

(
1+θ

2

)n

=
(2‖RN‖F

1−θ

)N−1(1+θ

2

)n
.

This bound secures the stability of finite dimensional systems – in fact, it recovers
the well-known fact that matrices of finite fixed dimension with eigenvalues strictly
inside the unit disc have exponentially decreasing iterates. But the argument breaks
down when we examine the dependence on N, since the bound (2.2) is not uniform

6‖ · ‖F refers to Frobenius norm, ‖A‖2
F = trace(A>A)
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in N: for n = N−1, for example, we find that unless RN is sufficiently small7 , then
there is an exponential growth in N,

(2.3) ‖Pn
s (∆tLN )‖6

(2‖RN‖F

1−θ

)N−1(1+θ

2

)n∣∣n=N−1
=

(
‖RN‖F

1+θ

1−θ

)N−1

.

This bound is sharp in the sense that the power-growth hinted on the right of (2.3)
is realized by the powers of the increasingly large N×N Jordan blocks

‖Jn
q‖ ∼

(
2

1−q

)N(1+q
2

)n

,

Jq :=



−q 1+q . . . . . . 0

0 −q 1+q
. . .

...
...

. . . . . . . . .
...

0 . . .
. . . −q 1+q

0 . . . . . . . . . −q

 .
(2.4)

Although |λk(Jq)|< 1 for −1 < q < 1, there is a nonuniform growth of ‖Jn
q‖ with

0 < q < 1, corresponding to q = θ in (2.3), when n ∼ N ↑ ∞. These increasingly
large Jordan blocks realize the extreme case of ill-conditioning warned in (1.11).

Instability of forward Euler scheme

The extremal example (2.4) is not just of academic interest. The following
classical example, [RM1967, §6.6],[KW1993, §3],[Tad2002, §5.1] sheds light on
what can go wrong with spectral analysis. Consider the transport equation with
fixed speed a > 0

(2.5)

{
yt(x, t) = ayx(x, t), (t,x) ∈ R+× (0,1)

y(1, t) = 0.

Its spatial part is discretized using one-sided spatial differences on equi-spaced
grid, {xν := ν∆x}N

ν=0, ∆x = 1/N, covering the interval [0,1],

(2.6)


d
dt

y(xν , t) = a
y(xν+1, t)− y(xν , t)

∆x
, ν = 0,1, . . . ,N−1,

y(xN , t) = 0.

7 To avoid an exponential growth of the upper-bound in (2.2) requires ‖RN‖F 6
1−θ

1+θ
; a more delicate

tuning of the scaling parameter δε shows that uniform bound is achieved for ‖RN‖F < 1−θ .
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This amounts to method of lines for the N-vector of unknowns, y(t) :=
(
y(x0, t), . . . ,y(xN−1, t)

)>,
governed by the N×N semi-discrete system in terms of the forward-difference op-
erator D+

N ,

(2.7) ẏ(t) = aD+
N y, D+

N :=
1

∆x



−1 1 . . . . . . 0

0 −1 1
. . .

...
...

. . . . . . . . .
...

0 . . .
. . . −1 1

0 . . . . . . . . . −1

 .

Observe that D+
N is semi-bounded — in fact it is strictly dissipative in the sense

that
(D+

N )
>+D+

N 6−2
(

1− cos
( π

N +1
))

IN×N .

This system (2.7) is integrated using one-stage Forward Euler method, (RK1), aug-
mented with boundary condition u(xN , t) = 0,
(2.8)
un+1 = P1(∆t ·aD+

N )un, un :=
(
u(x0, tn), . . . ,u(xN−1, tn)

)>
, n = 0,1,2, . . . ,

which encodes the fully discrete finite difference scheme

(2.9)


u(xν , tn+1)−u(xν , tn)

∆t
= a

u(xν+1, tn)−u(xν , tn)

∆x
, ν = 0,1, . . . ,N−1,

u(xN , tn+1) = 0.

The computation proceeds with hyperbolic scaling of fixed mesh ratio, ∆t/∆x. This
is precisely the regime N ∼ n indicated in (2.3), in which case it is known that
the forward Euler scheme (2.9) is unstable, if it violates the CFL condition 0 <
a∆t/∆x < 1. Observe that P1(∆t ·aD+

N ) amounts to a Jordan block,

P1(∆t ·aD+
N ) = I+∆t ·aD+

N = Jq, q = aδ −1, δ :=
∆t
∆x

.

Therefore, the instability of Jq with q∈ (0,1] follows, corresponding to 1< aδ < 2,
which was already claimed by the bound (2.4). In particular, the RK1 scheme (2.8)
is unstable, despite having |λk(P1(∆t ·aD+

N )|= |q|< 1.
Now consider integration of (2.7) using 4-stage (RK4). Spectral stability anal-

ysis
|λk(P4(∆t ·aD+

N ))|= |P4(−aδ )|6 1,

leads to the CFL condition, 0 < aδ 6 R4 = 2
√

2, which fails to guarantee stability,
since it does not capture the power-growth of the increasingly large Jordan block
aδD+

N . We conclude that even in the most favorable scenario (2.1), spectral analysis
is not enough to secure a uniform-in-N stability of RK methods for increasingly
large systems.



12 EITAN TADMOR

2.2 Resolvent stability is not enough
Recall that the imaginary interval condition (1.13) is necessary for the stability

of RK method. Kreiss and Wu [KW1993, Theorem 3.6] proved that the converse
holds in the sense of resolvent stability. Here, resolvent stability is interpreted in
the sense that there exists a constant KR > 0 independent of N, such that for all neg-
ative LN ’s, if the time step is small enough, ∆t · ‖LN‖6 Cs, then the corresponding
s-stage RK method satisfies

(2.10) ‖
(
zI−Ps(∆tLN )

)−1‖6 KR

|z|−1
, ∀|z|> 1.

The size of the time step is dictated by region of absolute stability, As, specifically
— Cs 6 Rs is the radius of largest half disc inscribed inside As,

B−Cs
(0) := {z : Re z < 0, |z|< Cs} ⊂As, As =

{
z ∈ C : |Ps(z)|6 1

}
.

The notion of stability in the sense of power-boundedness, (1.8), implies that the re-
solvent condition holds with KR =KL. The Kreiss Matrix Theorem, [Kre1962],[RM1967,
§4.9], states that the converse holds for a family of matrices with a fixed dimension.
Yet this does not enable us to conclude the uniform-in-N power-boundedness sta-
bility of RK method sought in (1.12), since the resolvent bound (2.10) may still
allow growth ‖Pn

s (∆tLN )‖. NKR. In [Tad1981] we conjectured that this linear
dependence on N is the best possible. This was confirmed in [LT1984] proving that

sup
A∈MN(C)

sup|z|>1(|z|−1)‖(zI−A)−1‖
supn>1 ‖An‖

∼ eN.

The above linear-growth-in-N behavior was exhibited by a sequence of increas-
ingly large N×N Jordan blocks, AN = NJ0. We observe that the AN’s in this case
are not resolvent bounded uniformly in N; it is only the ratio on the left that ex-
hibits the sharp linear bound in N. A concrete example of a family of matrices in
MN(C) which are resolvent stable yet their powers admit logarithmic growth in N
was constructed in [MS1965] and was improved to linear growth in N [IS2003].

Remark 2.1 (Dissipative resolvent condition). In [Tad1986] we considered a stronger
resolvent condition of the form

(2.11) ‖
(
zI−Ps(∆tLN )

)−1‖6 KR

|z−1|
, ∀{z : |z|> 1,z 6= 1}.

In [Rit1953] it was proved that (2.11) implies n−1‖Pn
s ‖

n→∞−→ 0. In [Tad1986] we
stated the improved logarithmic bound ‖Pn

s (∆tLN )‖. log(n); this was proved in
[Vit2004a]. More on the dissipative resolvent (2.11) and related notions of stability
can be found in [Vit2004b, Vit2005, Sch2016]. The dissipative resolvent bound
(2.11) reflects a flavour of coercivity condition which will be visited in §3.3 below;
however, it does not secure uniform-in-N power-boundedness. A more precise
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notion of a dissipative resolvent condition of order 2r > 0 requires the existence of
ηr > 0 such that

‖(zI−Ps(∆tLN ))
−1‖6 KR

dist{z,Ωr}
,

∀z /∈Ωr := {w : |w|+ηr|w−1|2r 6 1}.
(2.12)

The resolvent bound (2.12) reflects the classical notion of “dissipativity of order
2r” due to Kreiss [Kre1964]. It remains an open question whether (2.12) implies
uniform-in-N power-boundedness.

2.3 Strong stability is not enough
The contractivity stated in (1.16), ‖TN Ps(∆tLN )T

−1
N
‖6 1 with uniformly

bounded ‖T −1
N
‖ · ‖TN‖ 6 KT , is equivalent to strong stability in the sense that

there exist uniformly positive definite symmetrizer HN and KH > 0, such that

(2.13) P>
s (∆tLN )HN Ps(∆tLN )6HN , 0 <

1
KH
6HN 6 KH .

Just set HN = T ∗
N

TN with uniformly bounded KH = KT . In other words, (2.13)
tells us that8

(2.14) ‖Ps(∆tLN )‖HN
6 1, ∆t · ‖LN‖6 Cs.

This coincides with the usual notion of strong stability,9 e.g., [Tad2002, Ran2021].
It follows that a strongly stable RK scheme, un+1 = Ps(∆tLN )un, satisfies

|un+1|HN
= |Ps(∆tLN )un|HN

6 |un|HN
6 . . .6 |u0|HN

,

and hence the RK iterations satisfy the uniform-in-N stability bound, |u(tn)|`2 6 KH |u0|`2 .
The strong stability of the 3-stage RK method (RK3) with symmetrizer HN =HN

and C3 = 1, was proved in [Tad2002] and was later extended in [SS2019, Theorem
4.2] to all s-stage RK methods of order s = 3[mod4], namely — for small enough
time step, ∆t · ‖LN‖6 Cs, there holds,

(2.15) ‖Ps(∆tLN )‖HN
6 1, Ps(z) =

s

∑
k=0

zk

k!
, s = 3[mod4].

As mentioned above, this line of arguing stability by construction of the strong
stability symmetrizer, fails to extend to s-stage RK methods with s ∈ 4N, [SS2017,
RO2018, AAJ2023]. But this does not mean that the latter RK methods are neces-
sarily unstable. Indeed, the general question whether stable methods are necessar-
ily strongly stable was addressed in [Fog1964] — they are not. It leaves open the
possibility that the question stability can be pursued by other approaches — other
than strong stability. This will be addressed in the next section.

8 We let | · |H denote the weighted norm, |w|2H = 〈w,H w〉, and ‖ · ‖H denote the corresponding
induced matrix norm, ‖P‖H := maxw6=0 |Pw|H /|w|H .
9 also called monotonicity in the literature on Runge-Kutta methods.
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3 Numerical range and stability of coercive Runge-Kutta schemes

3.1 Numerical range
We let `2

H(CN) denote the weighted Euclidean space associated with a given
positive definite matrix H > 0, and equipped with

〈x,y〉H := x∗Hy, |x|2H := 〈x,Hx〉, H > 0.

Let A ∈ MN(C) be an N ×N matrix with possibly complex-valued entries. The
H-weighted numerical range, WH(A), is the set in the complex plane

WH(A) :=
{
〈Ax,x〉H : x ∈ CN , |x|H = 1

}
.

In the case of the standard Euclidean framework corresponding to H = I, we drop
the subscript H= I and remain with the usual | · |2

`2 = 〈·, ·〉, and the corresponding
numerical range denoted W (A). If A is real symmetric then W (A) is an interval
on the real line (and conversely — if W (A) is a real interval then A is symmetric,
[Kat1995, Problem 3.9]); if A is skew-symmetric then W (A) is an interval on the
imaginary line. For general A’s, the Hausdorff-Toeplitz theorem asserts that W (A)
is a convex set in C. As an example, we compute the numerical range of the N×N
translation matrix, J0,

(3.1) J0 :=



0 1 . . . . . . 0

0 0 1
. . .

...
...

. . . . . . . . .
...

0 . . .
. . . 0 1

0 . . . . . . . . . 0


N×N

.

For any unit vector x = (x1,x2, . . . ,xN)
> we set a new unit vector x j(ξ ) := ei jξ x j to

find

〈J0x(ξ ),x(ξ )〉=
N−1

∑
j=1

x j+1(ξ )x j(ξ ) = eiξ 〈J0x,x〉, x j(ξ ) := ei jξ x j,

which proves that W (J0) is a disc centered at the origin, Bρ(0); its radius, ρ =

ρN , is found by considering the eigenvalues λk(Re J0) = cos( kπ

N+1), k = 1,2, . . . ,N:
since for any A, Re W (A) =W (Re A), we find ρN = λ1(Re J0) = cos( π

N+1), and we
conclude that W (J) is the disc BρN

(0),

(3.2) W (J0) = {z : |z|6 ρN}, ρN = cos
( π

N +1
)
.

3.2 The numerical radius
The numerical radius of A ∈MN(C) is given by

rH (A) := max
|x|H=1

|〈Ax,x〉H |.
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The role of the numerical radius in addressing the question of stability was pi-
oneered in the celebrated work of Lax & Wendroff, [LW1964], in which they
proved the stability of their 2D Lax-Wendroff scheme, i.e., power-boundedness
of a family amplification matrices, ‖Gn‖ 6 Const., by securing r(G) 6 1. The
original proof, by induction on N (!), was later replaced by Halmos inequality,
[Hal1967],[Pea1966]

(3.3) r(Gn)6 rn(G).

Note that although the numerical radius is not sub-multiplicative, that is — al-
though r(AB)6 r(A)r(B) may fail for general A,B ∈MN(R), [GT1982], Halmos’
inequality states that it holds whenever A = B.
Since for all A’s there holds ‖A‖ 6 2r(A), (3.3) immediately yields the stability
asserted by Lax & Wendroff

(3.4) r(G)6 1 ; ‖Gn‖6 2r(Gn)6 2,

and more important for our purpose — power-boundedness is secured uniformly
in N. It is straightforward to extend these arguments to the weighted framework,
[Tad1981, §3]

rH(G
n)6 rn

H
(G),

and therefore rH(G)6 1 ; ‖Gn‖6 2KH, 0 < K−1
H 6H6 KH.

(3.5)

Remark 3.1. H.-O. Kreiss proved the LW stability (3.4) by linking it to a (strict)
resolvent condition

r(A)6 1 ; ‖(zI−A)−1‖6 1
|z|−1

, ∀|z|> 1

and conversely, the numerical range is the smallest set S = W (A), which induces
the strict resolvent condition, [Spi1993],

‖(zI−A)−1‖6 1
dist(z,S)

, ∀z ∈ Sc.

3.3 Coercivity and RK stability
We turn to verify the stability of the 1-stage forward Euler scheme (RK1),

un+1 = (I+∆tLN )un.

There are two regions of interest in the complex plane that we need to consider: the
weighted numerical range, WHN

(LN ), and the region of absolute stability associated
with forward Euler, A1 = {z : |1+ z|6 1}. We make the assumption that the time
step ∆t is small enough so that

(3.6) ∆t WHN
(LN )⊂A1, A1 = {z : |1+ z|6 1},
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then
rHN

(P1(∆tLN )) = max
|x|HN

=1
|1+ 〈∆tLN x,x〉HN

|

= max
z∈∆tWHN

(LN )
|1+ z|6max

z∈A1
|P1(z)|= 1.

(3.7)

We summarize by stating the following.

Theorem 3.2 (Numerical range stability of RK1). Consider the forward Euler
scheme associated with 1-stage forward Euler method (RK1),

un+1 = (I+∆tLN )un, n = 0,1,2, . . . ,

and assume the CFL condition (3.6) holds. Then the scheme is stable, and the
following stability bound holds

|un|`2 6 2KH|u0|`2 , ∀n> 1.

Example 3.1. As an example for theorem 3.2 we consider the one-sided differences
(2.7),

∆t ·aD+
N = a

∆t
∆x



−1 1 . . . . . . 0

0 −1 1
. . .

...
...

. . . . . . . . .
...

0 . . .
. . . −1 1

0 . . . . . . . . . −1

= aδ
(
− I+J0

)
,

a > 0, δ =
∆t
∆x

.

(3.8)

By translation and dilation, W (∆t ·aD+
N ) = aδ

(
−1⊕W (J0)

)
, where (3.2) tells us

that W (J0) is the ball BρN (0). Hence W (∆t ·aD+
N ) is given by the shifted ball,

(3.9) W (∆t ·aD+
N ) =

{
z : |z+aδ |6 aδρN

}
, δ =

∆t
∆x

, ρN = cos
( π

N +1
)
.

In particular, W (∆t ·aD+
N ) ⊂ B1(−1) uniformly in N if and only if the CFL condi-

tion aδ 6 1 holds, which in turn secures the stability of the 1-stage forward Euler
method, (RK1), for one-sided the transport equation(2.7), un+1 = (I+∆t·aD+

N )un.

Corollary 3.3 (Stability of forward Euler scheme). Consider the forward Euler
scheme (2.9) associated with 1-stage RK method (RK1),

un+1 = P1(∆t ·aD+
N )un, n = 0,1,2, . . . .

The scheme is stable under the CFL condition, 0 < aδ 6 1, and the following
stability bound holds |un|`2 6 2|u0|`2 , ∀n> 1.

The last corollary can be recast in terms of a stability statement for Jq =P1(∆t·
aD+

N ),
‖Jn

q‖6 2, q ∈ (−1,0).
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This complements the statement of instability of Jq in the range q ∈ (0,1], dis-
cussed in §2.1.
We note that the stability of Jq, q ∈ [−1,0) can be independently verified by its
induced `1-norm ,

(3.10) ‖Jq‖`1 = |−q|+ |1+q|= 1 ; ‖Jn
q‖`1 6 1, q ∈ [−1,0).

However, the `2-stability ‖Jq‖`2 6 2 stated in corollary 3.3 and the `1-stability
(3.10) are not equivalent uniformly in N. Also, Jq is subject to `2 von-Neumann
stability analysis, [RM1967, §4.7]

max
ϕ

∣∣−q+(1+q)eiϕ
∣∣= 1, q ∈ [−1,0).

However, since the underlying problem (2.9) is not periodic, von Neumann stability
analysis may not suffice: it requires the normal mode analysis [Kre1968] to prove
`2-stability. Thus, the numerical range argument summarized in corollary 3.3 offers
a genuinely different approach of addressing the question of stability, at least for
1-stage RK1.

Remark 3.4 (Coercivity). The CFL restriction encoded in (3.6), |〈∆tLN x,x〉HN
+

1|6 1, leads to the sub-class of negative LN’s which satisfy the coercivity bound

(3.11) 2Re 〈LN x,x〉HN
6−β |〈LN x,x〉HN

|2, ∀x ∈ {CN : |x|HN
= 1}.

Indeed, if LN is β -coercive in the sense that (3.11) holds with β > 0, then (3.6) is
satisfied under the CFL condition ∆t 6 β , and stability follows, rHN

(I+∆tLN )6 1.
We note that (3.11) places a weaker coercivity condition than the stronger notion
of coercivity introduced in [LT1998]

(3.12) L>
N
HN +HNLN 6−βL>

N
HNLN , β > 0.

Indeed, the latter implies (3.11), for

2Re 〈LN x,x〉HN
6−β 〈L>

N
HNLN x,x〉=−β |LN x|2HN

6−β |〈LN x,x〉HN
|2, |x|HN

= 1.

One can then revisit the coercivity-based examples for stable RK methods in [LT1998]
using the relaxed coercivity (3.11). The notion of β -coercivity is related to the dis-
sipative resolvent condition (2.11) but we shall not dwell on this point in this work.

3.4 Numerical range stability of SSP RKs

We extend theorem 3.2 to multi-stage RK methods using their Strong Stability
Preserving (SSP) format[GST2001, §3]. We demonstrate the first three cases of
RKs, s = 2,3,4.
Assume that the numerical range stability (3.7) holds. For example, the CFL con-
dition ∆t 6 β for β -coercive LN’s, (3.11), implies rHN

(I+∆tLN )6 1. Then, for the
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2-stage RK method, (RK2), we have by Halmos inequality (3.3)

rHN

(
P2(∆tLN )

)
6 1/2+ 1/2 r2

HN
(I+∆tLN )6 1/2+ 1/2 = 1,

P2(∆tLN )≡ 1/2I+ 1/2(I+∆tLN )
2.

Similarly, the 3-stage RK method (RK3) can be expressed as

P3(∆tLN )≡ 1/3I+ 1/2(I+∆tLN )+ 1/6(I+∆tLN )
3,

and hence if (3.7) holds, then the stability of (RK3) follows from Halmos inequal-
ity,

rHN

(
P3(∆tLN )

)
6 1/3+ 1/2 rHN

(I+∆tLN )+ 1/6 r3
HN
(I+∆tLN )

6 1/3+ 1/2+ 1/6 = 1.

A similar argument applies to the 4-stage RK (RK4),

P4(∆tLN )≡ 3/8I+ 1/3(I+∆tLN )+ 1/4(I+∆tLN )
2 + 1/24(I+∆tLN )

4;

the numerical stability (3.7), rHN
(I+∆tLN )6 1 implies the stability of RK4,

rHN

(
P4(∆tLN )

)
6 3/8+ 1/3 rHN

(I+∆tLN )+ 1/4 r2
HN
(I+∆tLN )

2 + 1/24 r4
HN
(I+∆tLN )

6 3/8+ 1/3+ 1/4+ 1/24 = 1.

We summarize by stating

Corollary 3.5 (Coercivity implies stability of RKs, s = 2,3,4). Consider the RK
schemes

un+1 = Ps(∆tLN )un, n = 0,1,2, . . . , s = 2,3,4.

Assume the numerical range stability (3.7) holds. In particular if LN is β -coercive
in the sense of (3.11), and that the CFL condition, ∆t 6 β , is satisfied. Then these
s-stage RK schemes are stable,

|u(tn)|HN
6 2|u(0)|HN

; |u(tn)|`2 6 2KH|u(0)|`2 .

The building block of corollary 3.5 is the condition of numerical range stability
(3.7) originated with (RK1). While this argument is sharp for the 1-stage forward
Euler, this SSP-based argument is too restrictive for multi-stage RKs. In particular,
corollary 3.5 rules out the large sub-class of negative yet non-coercive LN’s, due to a
numerical range which has non-trivial intersection with the imaginary axes. In par-
ticular, this includes the important sub-class of skew-symmetric (hyperbolic) LN’s
with purely imaginary numerical range. For example, if the one-sided differences



ON THE STABILITY OF RUNGE-KUTTA METHODS 19

in (2.7) are replaced by centered-differences

(3.13) un+1 = (I+∆t ·aD0
N)un, D0

N :=
1

∆x


0 1 . . . . . . 0

−1 0 1
. . .

...
...

. . . . . . . . .
...

0 . . . −1 0 1
0 . . . . . . −1 0


N×N

.

The numerical range lies on the imaginary interval, W (∆t ·aD0
N) = [−iR, iR] with

R = RN = aδ cos( π

N+1). The 1-stage forward Euler (3.13) fails to satisfy the imag-
inary interval condition, and therefore, corollary 3.5 fails to capture the stability of
the corresponding RKs, un+1 = Ps(∆t ·aD0

N)un for s = 3,4.

4 Spectral sets and stability of Runge-Kutta methods

We now turn our attention to the stability of multi-stage RK methods, Ps(∆tLN ).
Clearly, spectral analysis is not enough. On the other hand, direct computation
based on `1 or `2-von Neumann analysis is not accessible: even the entries in the
example of one-sided differences, Ps(∆t ·aD+

N ), for s = 3,4, become excessively
complicated to write down. Instead, we suggest to pursue a stability argument
based on numerical radius along the lines of (3.7), starting with

r(Ps(∆tLN )) = max
|x|=1
x∈CN

∣∣ s

∑
k=0

ak〈(∆tLN )
kx,x〉

∣∣.
This requires a proper functional calculus of numerical range, relating the sets
W (Ps(∆tLN )) and {|Ps(z)| , : z ∈W (∆tLN )}, similar to the role of the spectral
mapping theorem (1.9) as the centerpiece of spectral stability analysis. To this end
we recall the notion of a K-spectral set developed in [Del1999, CG2019], which
dates back to von Neumann [vN1951]; we refer to [SdV2023] for a most recent
overview.

Definition 4.1 (K-spectral sets). Given A ∈ MN(C), we say that Ω ⊂ C is a K-
spectral set of A if there exists a finite K > 0 such that for all analytic f ’s bounded
on Ω, there holds

(4.1) ‖ f (A)‖H 6 K max
z∈Ω

| f (z)|.

In a remarkable work, [Cro2007], Crouzeix proved that for every matrix A, the
numerical range WH(A) is a K-spectral set of A with K 6 11.08; this was later
improved to K = 1+

√
2, [CP2017]. An elegant proof of Crouzeix & Palencia

(1+
√

2)-bound, [RS2018] is included in an appendix. It follows, in particular,
that for all polynomials p,

(4.2) ‖p(A)‖H 6 (1+
√

2) max
z∈WH(A)

|p(z)|.
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Theorem 4.2 (Stability of Runge-Kutta schemes). Consider the s-stage explicit
RK method Ps(z) = ∑

s
k=0 akzk, associated with region of absolute stability As =

{z : |Ps(z)|6 1}. Then, the RK scheme

un+1 = Ps(∆tLN )un, n = 0,1,2, . . . .

is stable under the CFL condition ∆tWHN
(LN )⊂As,

(4.3) ∆t WHN
(LN )⊂As ; |un|`2 6 (1+

√
2)KH|u0|`2 , n = 1,2, . . . .

For proof we apply (4.2) with p = Pn
s :

‖Pn
s (∆tLN )‖HN

6 (1+
√

2) max
z∈∆tWHN

(LN )
|Pn

s (z)|

6 (1+
√

2)max
z∈As
|Pn

s (z)|6 1+
√

2,

and hence ‖Pn
s (∆tLN )‖6 (1+

√
2)KH.

Remark 4.3 (Implicit RK methods). The argument above makes a critical use of
the striking fact that the spectral set bound, K = 1+

√
2, is independent of nei-

ther the increasing degree, deg(Pn
s ) = sn, nor of the increasingly large dimension,

dim(LN ) = N. In fact, since (4.2) applies to the larger algebra of rational functions
bounded on WH(A), theorem 4.2 can be equally well formulated to general implicit
RK methods, [HNW1993, II.7].

We recall the spectral stability analysis (1.10) which is quantified in terms of
the the spectrum σ(LN )

∆t σ(LN )⊂As, σ(A) := {λk(A) : k = 1,2, . . . ,N}.

In the terminology of (4.1), the spectrum σ(LN ) is not a spectral set for LN . The-
orem 4.2 tells us that replacing the spectrum with the larger set of H-weighted
numerical range, WHN

(LN ) ⊃ σ(LN ), provides a very general framework for the
stability of any Runge-Kutta scheme, in conjunction with any LN . For exam-
ple, the forward Euler (RK1) applies to the one-sided difference (3.8) which was
covered in Corollary 3.3. Observe that for normal matrices10 , LN , there holds
conv{σ(LN )} = W (LN ), e.g., [Hen1962]. Thus, the gap WHN

(LN )\conv{σ(LN )}
comes into play in the stability statement (4.3) when normality uniform-in-N fails
— precisely the scenario described in §2.1 for failure of spectral analysis to secure
stability (in this context we remark that since ∩H>0WH(LN ) = conv{σ(LN )}, it is
essential to restrict attention to uniformly bounded symmetrizers HN in (1.4)).
A main drawback of the CFL condition (4.3) is its formulation in terms of a
weighted numerical range which is not always easily accessible. Here comes the
imaginary interval condition, (1.13), which provides an accessible sufficient con-
dition for stability of multi-stage RK methods.

10L∗
N
LN = LNL∗N where L∗

N
is the `2-adjoint of LN .
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Theorem 4.4 (Stability of Runge-Kutta methods). Consider the s-stage explicit
RK method and assume it satisfies the imaginary interval condition (1.13), namely
— there exists Rs > 0 such that

(4.4) max
−Rs6σ6Rs

|Ps(iσ)|6 1, Ps(z) = 1+ z+a2z2 + . . .+aszs.

Then, there exists a constant 0 < Cs < Rs such that for all negative LN’s, (1.4), the
RK method

un+1 = Ps(∆tLN )un, n = 0,1,2, . . . ,

is stable under the CFL condition ∆t · rHN
(LN )6 Cs,

(4.5) ∆t · rHN
(LN )6 Cs ; |un|`2 6 (1+

√
2)KH|u0|`2 , n = 1,2, . . . .

Proof. Recall B−α denotes the semi-disc, B−α := {z : Re z6 0, |z|6 α}. Consider
an arbitrary negative LN ,

2Re 〈LN x,x〉HN
= 〈(L>

N
HN +HNLN )x,x〉6 0

The negativity of LN states that the weighted numerical range WHN
(LN ) lies on the

left side of complex plane, and in fact, inside the left semi-disc

WHN
(LN )⊂ B−rHN

(LN )
:= {z : Re z6 0, |z|6 rHN

(LN )}.

Next, we make use of [KS1992, Theorem 3.2] which asserts11 that for an s-stage
RK method satisfying the imaginary interval condition, its region of absolute sta-
bility contains a non-trivial semi-disc B−Cs

with Cs 6 Rs, so that

(4.6) As ⊃ B−Cs
:= {z : Re z6 0, |z|6 Cs}, Cs 6 Rs.

We conclude that for small step-size (4.5)

∆t WHN
(LN )⊂ ∆t B−rHN

(LN )
= B−

∆t·rHN
(LN )
⊂ B−Cs

⊂As.

Theorem 4.2 implies stability (1.6) with KL = (1+
√

2)KH. �

Remark 4.5. We note that theorem 4.4 makes use of the semi-disc B−Cs
as a spectral

set for Ps(∆tLN ). In this case, one expects a sharper bound, compared with (4.2),
[SdV2023, §3.2], ‖p(A)‖H 6 2maxz∈WH(A) |p(z)|. The constant 2 — corresponding
to (3.4) with p(z) = zn, agrees with Crouzeix’s conjecture [Cro2007] regarding the
optimality of the numerical range as 2-spectral set.

11 Note that this requires Ps(0) = P ′
s(0) = 1 in (4.4).
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4.1 Optimality of the numerical radius-based CFL condition
We observe that the CFL condition quoted in (4.5),

(4.7) ∆t · rHN
(LN )6 Cs,

offers a refinement of the CFL condition (1.7). Indeed, since HN is uniformly
bounded 0 < K−1

H 6HN 6 KH, we have

rHN
(LN )6 ‖LN‖HN

6 KH‖LN‖,

and hence, the CFL condition — compare with (1.7), ∆t · ‖LN‖ 6 C ′s with C ′s :=
Cs/KH, implies that (4.5) holds, and stability follows.
In fact, we claim that (4.7) offers an optimal CFL condition in the following sense.
The proof of theorem 4.4 compares two semi-discs: on one hand we identified B−Cs
as the largest semi-disc inscribed inside As (this is a property of the RK method un-
der consideration); on the other hand, we identified B−rHN

(LN )
as the smallest semi-

disc which contains WHN
(LN ). The CFL condition (4.7) secures the dilation of the

latter semi-disc inside the former, and there, we seek the smallest semi-disc as-
sociated with LN which satisfies a set of desired requirements. We claim that we
cannot find a smaller semi-disc which will secure this line of argument. Indeed,
let [[·]] denote an arbitrary (vector) norm on MN(C), with a semi-disc B−[[LN ]]

which
would be a candidate for a better CFL condition, i.e., an even smaller semi-disc
B−[[LN ]]

⊂ B−rHN
(LN )

. Clearly, by the necessity encoded in (1.10), the CFL condition

requires that [[A]] is spectrally dominant in the sense that [[A]] > |λmax(A)| for all
A ∈MN(C). Moreover, since power-boundedness is invariant under unitary trans-
formations, ‖(UAU∗)n‖HN

= ‖An‖HN
, we ask that the semi-disc associated with [[·]]

be unitarily invariant,

UB−[[LN ]]
U∗ = B−[[LN ]]

for all U ′s such that |Ux|HN
= |x|HN

.

It follows from the main theorem of [FT1984] that the semi-disc B−[[LN ]]
must con-

tain B−rHN
(LN )

. That is, the corresponding CFL condition (4.7) is optimal in the

sense that it is the smallest, spectrally dominant, unitarily invariant semi-disc which
makes the argument of theorem 4.4 work.

A main aspect of theorem 4.4 is going beyond any specific coercivity require-
ment which was sought in the SSP-based arguments in §3.4. It applies to all neg-
ative LN’s, thus addressing the question sought in [LT1998, §3.5]. A precise char-
acterization for RK methods satisfying the imaginary interval condition was given
in [KS1992, Theorem 3.1]. Consider an explicit s stage RK method, accurate of
order r > 1,

(4.8a) Ps(z) =
r

∑
k=0

zk

k!
+

s

∑
k=r+1

akzk, r > 1.
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FIGURE 4.1. The semi-circles B−Cs
(0) inscribed inside A3 (left) and A4 (right),

It satisfies the imaginary interval condition (1.13) if and only if

(4.8b)


(−1)

r+1
2 (ar+1−1)< 0, r is odd,

(−1)
r+2

2 (ar+2− (r+2)ar+1 + r+1)< 0, r is even.

In the particular case of s = r = 3,4 we find that the 3-stage RK method (RK3)
and 4-stage RK method RK4 satisfy the imaginary interval condition and hence
the existence of semi-discs with radii C3 =

√
3 and C4 = 2.61, shown in figure 4.1

which imply stability under the respective CFL conditions,

∆t · ‖LN‖6 C ′s , C ′s = Cs/KH.

In particular, this extends the strong stability statement of 3-stage (RK3) in [Tad2002,
Theorem 2] and provides a stability proof for the 4-stage RK (RK4) for arbi-
trarily large systems with negative LN ’s. Comparing the RK4 stability require-
ment, C4 = 2.61, vs. the RK4 interval condition mentioned earlier, R4 = 2

√
2,

reflects the stricter stability requirement associated with the larger numerical range
WHN

(LN )⊃ σ(LN ).
Condition (4.8b) becomes more restrictive for higher order methods; instead, one
can increase r and use s-stage protocol, s > r to form a dissipative term ∑

s
k=r+1 akzk

which enforces the imaginary interval condition. In particular, the 7-stage Dormand-
Prince method [DP1980], with embedded fourth- and fifth-order accurate RK45,
(r,s) = (5,7) which is used in MATLAB, does satisfy the imaginary interval con-
dition (4.8b), [SR1997]. See the example of the 10-stage explicit RK method
SSPRK(10,4) in [RO2018, Fig. 2].
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5 Examples: stability of time-dependent methods of lines

We demonstrate application of the new stability results for arbitrarily large sys-
tems in the context of methods of lines for difference approximation of the scalar
hyperbolic equation

yt = a(x)yx, (t,x) ∈ R+× [0,1],

augmented with proper boundary conditions. The stability results extend, mu-
tatis mutandis12 , to multi-dimensional hyperbolic problems, yt = ∑

d
j=1 A j(x)yx j .

Stability theories for such difference approximations were developed in the clas-
sical works in the 50s–70s, e.g., [LR1956, LW1964, LN1964, Kre1964, RM1967,
Kre1968, GKS1972] and can be found in the more recent texts of [Lev2007, GKO2013,
Hes2017]. Our aim here is to revisit the question of stability for RK time-discretizations
of such difference approximations, from a perspective of the stability theory devel-
oped in §4. A central part of this approach requires computation of the (weighted)
numerical range of the large matrices that arise in the context of such difference ap-
proximations. The development of full stability theory along these lines is beyond
the scope of this paper, and is left for future work.

5.1 Periodic problems. Constant coefficients
We consider the 1-periodic problem{

yt(x, t) = ayx(x, t), (t,x) ∈ R+× [0,1]

y(0, t) = y(1, t).

Its spatial part is discretized using finite-difference method with constant coeffi-
cients (depending on a), {qα}, and acting on a discrete grid, xν = ν∆x, ∆x = 1/N,

d
dt

y(xν , t) = Q(E)y(xν , t), ν = 0,1, . . . ,N−1, Q(E) :=
1

∆x

r

∑
α=−`

qαEα .

Here E is the 1-periodic translation operator, Eyν = y(ν+1)[modN]. The result-
ing scheme amounts to a system of ODEs for the N-vector of unknowns, y(t) =(
y(x0, t), . . . ,y(xN−1, t)

)>, which admits the circulant matrix representation

ẏ(t) = Q(EN )y, Q(EN ) =
1

∆x

r

∑
α=−`

qαEα ,

EN :=



0 1 . . . . . . 0

0 0 1
. . .

...
...

. . . . . . . . .
...

0 . . .
. . . 0 1

1 . . . . . . 0 0


N×N

.

(5.1)

12 In particular, `2-stability needs to be adjusted to weighted H-stability, weighted by the smooth
symmetrizer H = H(x,ξ ) so that H(x,ξ )∑ j A j(x)ei jξ is symmetric.
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The numerical range of circulant matrices is given by convex polytopes. Indeed, let

F denote the unitary Fourier matrix, F jk =
{ 1√

N
e2πi jk/N

}N

j,k=1
. Then F diagonalizes

EN ,

〈EN x,x〉= 〈ÊN x̂, x̂〉,

ÊN := F∗ENF=



e
2πi
N 0 . . . . . . 0

0 e2 2πi
N 0

. . .
...

...
. . . . . . . . .

...

0 . . .
. . . e(N−1) 2πi

N 0
0 . . . . . . . . . 1


, x̂ := F∗x.

and hence W (EN ) =
{ N

∑
j=1
|x̂ j|2e2πi j/N : ∑

j
|x̂ j|2 = 1

}
is the regular N-polytope with

vertices at {e2πi j/N}N
j=1. This should be compared with the numerical range of the

Jordan block (3.2).
It follows that Q̂(EN ) = Q(ÊN) and hence the action of the N×N circulant Q(EN )

is encoded it terms of its symbol, q̂(ξ ) :=
1

∆x ∑
α

qαeiαξ ,

〈Q(EN )x,x〉= 〈Q̂(EN )x̂, x̂〉,

Q̂(EN ) =



q̂(2π

N ) 0 . . . . . . 0

0 q̂(2 2π

N ) 0
. . .

...
...

. . . . . . . . .
...

...
. . . . . . q̂((N−1)2π

N ) 0
0 . . . . . . 0 q̂(2π)

 .

Lemma 5.1 (Numerical range of circulant matrices). The numerical range of the
circulant matrix Q(EN ) is given by the convex polytope with vertices at {q̂(2π j/N)}N

j=1,

W (Q(EN )) =
{

∑
j
|x̂ j|2 q̂

(
2π j/N

)
: |x̂|= 1

}
.

We now appeal to theorem 3.2 which secures the stability of forward Euler
time discretization for LN = Q(EN ), provided the CFL condition ∆tW (Q(EN )) ⊂
B1(−1) holds.

Proposition 5.2 (Stability — difference schemes with constant coefficients. I).
Consider the fully-discrete finite difference scheme

un+1 = un +
∆t
∆x ∑

α

qαEα

N
un, n = 0,1,2, . . . .
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The scheme is stable under the CFL condition,

(5.2) max
16 j6N

∣∣∣1+∆t ·q̂(2π j/N)
∣∣∣6 1, q̂(ξ ) :=

1
∆x ∑

α

qαeiαξ ,

and the following stability bound holds |un|`2 6 2|u0|`2 , ∀n> 1.

Since the CFL condition (5.2) guarantees that LN = I+∆t ·Q(EN ) is coercive,
the result goes over to SSP-based multi-stage RK time differencing. In fact, theo-
rem 4.4 applies for multi-stage RK time differencing and for all negative Q(EN )’s.

Proposition 5.3 (Stability — difference schemes with constant coefficients. II).
Consider the fully-discrete finite difference scheme

un+1 =Ps
(
∆t ·Q(EN )

)
un, n = 0,1,2, . . . ,

Ps(z)=
s

∑
k=0

akzk, Q(EN )=
1

∆x ∑
α

qαEα

N
.

(5.3)

Here, Ps is an s-stage RK stencil satisfying the imaginary interval condition, so
that (4.6) holds with Cs > 0. If the spatial discretization is negative, Re q̂(2π j/N)6
0, then the scheme (5.3) is stable under the CFL condition

(5.4) max
16 j6N

|∆t · q̂(2π j/N)|6 Cs, q̂(ξ ) = Q(eiξ ),

and the following stability bound holds,

|un|`2 6 (1+
√

2)|u0|`2 , n = 1,2, . . . .

Propositions 5.2 and 5.3 recover von-Neumann stability analysis for difference
schemes with constant coefficients, [GKO2013, §4.2]. We shall consider three ex-
amples.

Example 5.1 (One-sided differences). Consider the periodic setup of the one-
sided difference (2.7),

un+1 =
(
I+∆t ·Q(EN ))

)
un, Q(EN ) =

a
∆x

(EN − I),

with spatial symbol q̂(ξ ) =
a

∆x
(eiξ −1). This amounts to the N×N system

un+1 = LN un,

LN =



1−δa δa 0 . . . 0

0 1−δa δa
. . .

...
...

. . . . . . . . . 0

0
. . . . . . 1−δa δa

δa 0 . . . 0 1−δa


N×N

, δ =
∆t
∆x

.
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Using proposition 5.2 we secure stability under the usual CFL condition δa6 1,

δa6 1 ; max
16 j6N

∣∣1+δa(e2πi j/N−1)
∣∣2 = |1−δa|2 +2|1−δa|δa+(δa)2 6 1.

This extends to multi-stage time differencing, RKs, s = 3,4

un+1 = Ps(∆t ·Q(EN ))un, Ps(z) =
s

∑
k=0

zk

k!
, s = 3,4.

Clearly, Re q̂ 6 0, and we can appeal to proposition 5.3 which secures stability
under CFL condition δa6 Cs; indeed,

δa6 Cs ; δa(e2πi j/N−1) ∈ B−Cs
, j = 1,2, . . . ,N.

Example 5.2 (Centered differences). Consider the periodic setup of the centered
spatial difference scheme, (3.13), combined with multi-stage RK time differencing,
RKs, s = 3,4,

un+1 = Ps(∆t ·Q(EN ))un, Q(EN ) =
a

2∆x
(EN −E−1

N
).

Spatial differencing has purely imaginary symbol q̂(ξ )=
a

∆x
isin(ξ ), and we invoke

proposition 5.3 which secures stability under the CFL condition (5.4),

δa = max
16 j6N

∣∣∣δaisin(2πi j/N)
∣∣∣6 Cs, δ =

∆t
∆x

.

This line of argument extends to higher order centered differences, [Tad2002, §5.2],
e.g., the fourth-order difference

Q(EN ) =
a

12∆x
(−E2

N
+8EN −8E−1

N
+E−2

N
)

or the fourth-order finite-element difference

Q(EN ) =



4/6 1/6 0 . . . 1/6

1/6 4/6 1/6
. . . 0

0
. . . . . . . . .

...
...

. . . . . . 4/6 1/6
1/6 0 . . . 1/6 4/6



−1

× 1
2∆x



0 1 . . . . . . −1

−1 0 1
. . .

...

0
. . . . . . . . .

...
...

. . . . . . 0 1
1 0 . . . −1 0


N×N

.

Example 5.3 (Lax-Wendroff differencing). We use the Lax-Wendroff protocol for
second-order spatial difference [LW1964] (observe that the mesh ratio, δ = ∆t/∆x,
is kept fixed),

QLW(EN ) =
a

2∆x
(EN −E−1

N
)+

δa2

2∆x
(EN −2I+E−1

N
),

with symbol

q̂LW(ξ ) =
a

∆x
isin(ξ )+

δa2

∆x
(cos(ξ )−1).
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Stability of the Lax-Wendroff (LW) scheme

(5.5) un+1 =
(
I+∆tQLW(EN )

)
un

follows provided CFL condition (5.2) holds, namely |1+∆tq̂LW(2π j/N)|6 1. Noting
that

q̂LW(ξ ) =
2a
∆x

isin(ξ/2)cos(ξ/2)− 2δa2

∆x
sin2(ξ/2),

it is a standard argument, e.g., [GKO2013, §1.2] to conclude that δa 6 1 secures
the desired CFL condition,

δa6 1 ; max
16 j6N

|1+∆tq̂LW(2π j/N)|2 6 1.

We note that LW differencing has a negative symbol Re q̂LW(ξ ) 6 0, and therefore
theorem 4.4 secures the stability of higher-order time discretizations of LW scheme

un+1 = Ps
(
∆tQLW(EN )

)
un, s = 3,4,

under the relaxed CFL condition, 2δa6 Cs. Indeed,
2δa6 Cs

; max
16 j6N

∣∣∆t q̂LW(2π j/N)
∣∣2

6max
ξ

{
4
(
δasin(ξ/2)cos(ξ/2)

)2
+4
(
δasin(ξ/2)

)4}
6 C 2

s .

The constant coefficient case in the period setup involves the algebra of cir-
culant matrices, all of which are uniformly diagonlizable by the Fourier matrix
F. This is a rather special case, in which von Neumann spectral stability analysis
prevails for arbitrarily large systems. Clearly, the numerical range-based stability
results of sections 3 and 4 offer a more general framework for studying stability of
general non-periodic cases. Examples are outlined below.

5.2 Periodic problems. Variable coefficients
We consider the 1-periodic problem with C2-variable coefficient a(·)

(5.6)

{
yt(x, t) = a(x)yx(x, t), (t,x) ∈ R+× [0,1]

y(0, t) = y(1, t).

The spatial part is discretized using finite-difference method with a(x)-dependent
variable coefficients, {qα(x)}, and acting on a discrete grid, xν = ν∆x, ∆x = 1/N,

d
dt

y(xν , t) = Q(E)y(xν , t), ν = 0,1, . . . ,N−1,

Q(E) :=
1

∆x

r

∑
α=−`

qα(x)Eα .
(5.7)

The accuracy requirement places the restriction ∑α qα(x) = 0, ∑α αqα(x) = a(x)
and so on. The difference scheme (5.7) amounts to an N×N system of ODEs with
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‘slowly varying’ circulancy, that is Q(x,EN )i j changes smoothly in the sense that
|Q(x,EN )i+1, j+1−Q(x,EN )i j| is bounded independent of 1/∆x.

(5.8) ∆x∑
α

α
2|qα(x)|C2 6 Kq.

Let Q̂ denote the formal symbol associated with (5.7)

Q̂(x,ξ ) :=
1

∆x

r

∑
α=−`

qα(x)eiαξ .

Assume that the symbol is negative Re Q̂(x,ξ )6 0. Then by the sharp Gårding in-
equality, [LN1964, Theorem 1.1], see also [LW1962], the corresponding difference
operator is semi-bounded13 , namely — there exists a constant η > 0 depending on
Kq but otherwise independent of N, such that

(5.9) Re Q(x,EN )6 2ηIN×N .

Theorem 4.4 applies to Q(x,EN )−ηI, implying its power-boundedness under the
CFL condition (1.7),

‖Pn
s
(
∆t(Q(x,EN )−ηI)

)
‖6 1+

√
2, ∆t · r

(
Q(x,EN )

)
6 Cs.

Next, we note that the shift −ηI produces only a finite bounded perturbation B,
namely

Ps
(
∆t ·Q(x,EN )

)
= Ps

(
∆t · (Q(x,EN )−ηI)+∆t ·ηI

)
= Ps

(
∆t · (Q(x,EN )−ηI)

)
+∆t ·B,

B = η

s

∑
k=1

akk
(
∆t ·Q(x,EN )

)k−1
,

where ‖B‖ 6 ηKB with KB = ∑
s
k=1 |ak|kC k−1

s . We now invoke the fact (due to
[Kre1962, Str1964]) that bounded perturbations of power-bounded matrices re-
main power bounded14 ,

‖An‖6 KA ; (A+∆t ·B)n 6 KAeKA‖B‖tn , tn = n∆t.

This implies the desired stability bound

|u(tn)|6 ‖Pn
s
(
∆t ·Q(x,EN )

)
‖ · |u0|6 (1+

√
2)e(1+

√
2)ηKBtn |u0|.

We summarize by stating

13 Note that Q(x,EN ) is unbounded, ‖Q(x,EN )‖= O(1/∆x).

14 This follows from the identity (X +Y )n ≡ Xn +
n−1

∑
k=0

Xn−k−1Y (X +Y )k, n = 1,2, . . . and using

induction with (X ,Y ) = (A,∆t ·B).
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Proposition 5.4 (Stability — finite difference schemes with variable coeffi-
cients). Consider the fully-discrete finite difference scheme

(5.10) un+1 = Ps
(
Q(x,EN )

)
un, n = 0,1,2, . . . ,

where Q(x,EN ) =
1

∆x ∑
α

qα(x)Eα

N
is a local difference operator, (5.8), and Ps is an

s-stage RK stencil satisfying the imaginary interval condition, (4.6). If the spatial
symbol is negative,

(5.11) Re Q̂(x,ξ )6 0, Q̂(x,ξ ) :=
1

∆x ∑
α

qα(x)eiαξ ,

then the scheme (5.10) is stable under the CFL condition

(5.12) max
ξ

|∆t · Q̂(x,ξ )|6 Cs,

and the following stability bound holds with KB := ∑
s
k=1 |ak|kC k−1

s ,

|un|`2 6 (1+
√

2)e(1+
√

2)ηKBtn |u0|`2 , n = 1,2, . . . , ∆t · r
(
Q(x,EN )

)
6 Cs.

Remark 5.5. The stability analysis of difference schemes with variable coefficients
in [LN1964, Kre1964] bounds the norm of ‖Ps(∆tQ(x,EN ))‖6 1+O(∆t). How-
ever, the result is limited to one-step forward difference in time, I+∆tQ(x,EN ).
The essence of propostion 5.4 is extension to RK time-differentiating of higher
orders s> 1.

Stability of Fourier method. There are two approaches to handle the stabil-
ity of difference approximations of problems with variable coefficients: the von-
Neumann spectral analysis based on sharp Gårding inequality (5.9), or the energy
method e.g., [Tad1987, §2]; both approaches requires local stencils (5.8). An al-
ternative approach for stability with variable coefficients in based on numerical
dissipation, [Kre1964]. As an extreme example for using our RK stability result,
we consider the Fourier method, [KO1972, §4],[GO1977], which is neither local
nor dissipative. Set ∆x = 1/(2N+1) with an odd number of (2N +1) gridpoints. The
Fourier method for (5.6) amounts to (2N+1)× (2N+1) system of ODEs

ẏ(t) = Q(DF
N)y(t),

Q(DF
N) = ADF

N , A =


a(x0)

a(x1)
. . .

a(x2N)

 ,(5.13)
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where the diagonal matrix A encodes a(x) and DF
N is the (2N+1)×(2N+1) Fourier

differencing matrix

DF
N = F



−iN 0 . . . 0

0 −i(N−1) 0
. . .

...
...

. . . . . .
...

...
. . . i(N−1) 0

0 . . . . . . 0 iN

F
∗, F jk =

{ ei jk∆x
√

2N +1

}2N+1

j,k=1
.

The Fourier difference method is neither local, (DF
N) jk =

(−1) j−k

2sin((k− j)∆x/2)
fails (5.8),

nor dissipative, and the method is unstable in presence of variable coefficients,
[GHT1994]. However, there is a different weighted-stability. Specifically —
for the prototypical case a(x) = sin(x), there exists a symmetrizer HN such that
[GHT1994, Theorem 2.1]

Q(DF
N)
>HN +HN Q(DF

N)6HN ,

where the HN -norm corresponds to the H1-norm

|u|2HN
= |u|2H1 , |u|2Hs :=

N

∑
k=−N

(1+ k2)
s
2 |ûk|2.

Proposition 5.6 (Stability — Fourier method). Consider the time discretization
of the Fourier method,

ẏ(t) = Q(DF
N)y(t),

Q(DF
N) = ADF

N , A =


sin(x0)

sin(x1)
. . .

sin(x2N)

 ,
using RK methods which satisfy the imaginary interval condition,

un+1 = Ps
(
∆t ·Q(DF

N)
)
un, n = 1,2, . . . , ∆t ·N 6 Cs.

The Fourier method is H1-stable

(5.14) |un|HN
6 (1+

√
2)etn/2|u0|HN

.

We note that the symmetrizer HN is not uniformly bounded from below, N−2I6
HN 6 4I, so `2-stability fails. Converted to `2-framework, (5.14) yields

|un|`2 6 N|un|HN
6 N(1+

√
2)|etn/2|u0|HN

= 2N(1+
√

2)|etn/2|u0|`2 .



32 EITAN TADMOR

5.3 Initial-boundary value problems
We consider the problem (2.5) in the strip{

yt(x, t) = ayx(x, t), a > 0, (t,x) ∈ R+× [0,1]

y(1, t) = 0.

A general stability theory for difference approximations of initial-boundary value
problems was developed in [Kre1968, GKS1972]. It is based on normal mode anal-
ysis and secures the resolvent-type stability of such approximations. The following
example shows how to utilize the framework offered in theorem 4.2, to study the
stability of difference approximations of initial-boundary value problems.

Example 5.4 (One-sided difference). Consider an interior centered differencing
augmented with one-sided difference at the outflow boundary x = 0,

(5.15)


d
dt

y(x0, t) = a
y(x1, t)− y(x0, t)

∆x
d
dt

y(xν , t) = a
y(xν+1, t)− y(xν−1, t)

2∆x
, ν = 1,2, . . . ,N−1

y(xN , t) = 0.

We emphasize that we treat the semi-infinite problem, which amounts to method of
lines for the infinite-vector of unknowns, y(t) :=

(
y(x0, t),y(x1, t), . . . ,y(xN−1, t)

)>,
governed by the semi-discrete system

(5.16) ẏ(t) = LN y(t), LN =
a

∆x



−1 1 0 . . . . . . 0

−1/2 0 1/2
. . . . . .

...

0
. . . . . . . . .

...
...

. . . −1/2
. . . . . . 0

...
. . . . . . −1/2 0 1/2

0 . . . . . . 0 −1/2 0


.

Although the matrix LN is not negative, L>
N
+LN =

a
∆x

[
−2 1/2
1/2 0

]
⊕0(N−2)×(N−2) ,

it is weighted negative with the simple symmetrizer HN :

L>
N
HN +HNLN =

a
∆x

[
−1 0

0 0

]
⊕0(N−2)×(N−2) 6 0,

HN :=
[

1/2 0
0 1

]
⊕ I

(N−2)×(N−2) .

Using theorem 4.4, we conclude the stability of time discretization of (5.16) using
any RK method satisfying the imaginary interval condition, (4.8). In particular, the
fully-discrete schemes based on the s-stage RK time discretization

un+1 = Ps(∆tLN )un, s = 3,4, n = 1,2, . . . ,
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are stable under the CFL condition ∆t · rHN
(LN )6 Cs,

|u(tn)|6 4(1+
√

2)|u0|.

Observing the simple bound, rHN
(LN ) 6

a
∆x

KH with KH = 2, we end with CFL

condition sufficient for stability, δa6 Cs/2.

The last example depends on verifying weighted negativity, L>
N
HN +HNLN 6 0,

which requires the construction of a proper symmetrizer on a case by case basis. A
systematic approach for studying the weighted negativity for properly designed
boundary treatment augmenting centered difference schemes was developed in
[KS1974, Str1994, Gus1998, BEF2010]. To extend our RK stability framework to
larger classes of difference approximations of initial-boundary values problems re-
quires a more precise characterization of the weighted numerical range of Teoplitz-
like spatial discretizations. This is left for future study.

Appendix: The numerical range is (1+
√

2)-spectral set

In his remarkable work [Cro2007], Crouzeix proved that WH(A) is a K-numerical
set with K = 11.08 which was later improved by Crouzeix & Palencia to K =
1+
√

2. We quote here the elegant proof of Ransford & Schwenninger [RS2018]
for Crouzeix & Palencia (1+

√
2)-bound, based on the following lemma. In par-

ticular, we refer to the recent review [SdV2023].

Lemma A.1 (Ransford & Schwenninger (1+
√

2)-spectral set). Let T be a Hilbert
space bounded operator ‖T‖< ∞, and let Ω be a bounded open set containing the
spectrum of T . Suppose that for each f analytic on Ω, there exists an analytic g on
Ω such that the following holds (here and below, ‖ f‖Ω := supΩ | f |):

(A.1) ‖g‖Ω 6 ‖ f‖Ω and ‖ f (T )+g(T )∗‖6 2‖ f‖Ω.

Then
‖ f (T )‖6 (1+

√
2)‖ f‖Ω

Proof. Let K := sup
‖ f‖Ω=1

‖ f (T )‖. By assumption, for each f , ‖ f‖Ω 6 1, there exists

g such that (A.1) holds. Ransford & Schwenninger invoked the identity

f (T ) f (T )∗ f (T ) f (T )∗ ≡ f (T )
(

f (T )+g(T )∗
)∗ f (T ) f (T )∗− ( f g f )(T ) f (T )∗.

A simple exercise shows that the norm of the quantity on the left equals ‖ f (T )‖4.
Since by (A.1)1, ‖( f g f )‖Ω6 1 hence ‖ f g f (T )‖6K, and since by (A.1)2, ‖ f (T )+
g(T )∗‖6 2, then the expression on the right does not exceed

‖ f (T )‖4 = ‖ f (T ) f (T )∗ f (T ) f (T )∗‖
6 ‖ f (T )‖‖ f (T )+g(T )∗‖‖ f (T )‖‖ f (T )∗‖+‖( f g f )(T )‖‖ f (T )∗‖
6 2K3 +K2.
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Hence, K4 = sup
‖ f‖Ω=1

‖ f (T )‖4 6 2K3 +K2 which implies K 6 1+
√

2. �

Note that the lemma does not involve the numerical range of T — this comes into
play in the construction of g = g

Ω
satisfying (A.1), in terms of Cauchy transform,

g
Ω
(z) :=

1
2πi

∫
∂Ω

f (ζ )
ζ − z

dζ , z ∈Ω.

The main thrust of the work, originated in [vN1951] and then developed in [Del1999]
[Cro2007] and finally [CP2017], is to show that such g

Ω
with Ω =WH(T ) satisfies

(A.1).
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