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Abstract
We prove that Runge–Kutta (RK) methods for numerical
integration of arbitrarily large systems of Ordinary Dif-
ferential Equations are linearly stable. Standard stability
arguments—based on spectral analysis, resolvent condi-
tion or strong stability, fail to secure the stability of RK
methods for arbitrarily large systems. We explain the fail-
ure of different approaches, offer a new stability theory
based on the numerical range of the underlying large
matrices involved in such systems, and demonstrate its
application with concrete examples of RK stability for
hyperbolic methods of lines.
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1 INTRODUCTION

Runge–Kutta (RK)methods arewidely used class of effectivemethods for numerical integration of
systems ofOrdinaryDifferential Equations (ODEs). In particular, suchmethods are used routinely
for integration of large systems of ODEs encountered in various applications. As examples we
mention RK integration of large systems of ODEs in molecular dynamics in Chemistry, in many
particle systems inPhysics, in climatemodeling, in cosmology and in spatial discretization of time-
dependent PDEs which end up with increasingly large systems of ODEs, so-called “method of
lines.” In recent years such problems also arise in integration of high-dimensional data sets/neural
networks, for example [4, 12, 22, 45].

1.1 An informal summary of main results

The stability of RK methods encoded in terms of their region of absolute stability is well docu-
mented [3, 23, 28]. We therefore begin with an informal summary of our results, clarifying the
claim made in the title.
We consider linear systems of ODEs, 𝐲̇ = 𝕃𝑁𝐲, associated with a general class of 𝑁 ×𝑁 semi-

boundedmatrices, 𝕃𝑁 , and a RKmethod associated with the polynomial, (𝑧) = ∑𝑠

𝑘=0 𝑎𝑘𝑧
𝑘. The

RK method is stable if its computed solution evolved in time, remains comparable to the size of
the (initial) data, uniformly in the number of time steps, 𝑛, and the size of the underlying system,
𝑁. Thus, the linearized stability of the RK method in the present context requires

‖𝑛(Δ𝑡𝕃𝑁)‖ ⩽ 𝐾𝕃, 𝑛 = 1, 2, … ,

with a constant 𝐾𝕃 independent of 𝑛 and 𝑁. This leads to the classical stability criterion which
requires the time-step Δ𝑡 to be small enough so that

Δ𝑡𝜎(𝕃𝑁) ⊂ 𝒜.

Here,𝜎(𝕃𝑁) is the spectrumof𝕃𝑁 and𝒜 = {𝑧 ∈ ℂ ∶ |(𝑧)| ⩽ 1} is the region of absolute stability
associated with the RKmethod under consideration. This classical framework of stability suffices
for systems of finite size but fails for arbitrarily large systems. There is an extensive literature,
going back to the 1980’s, which tried to secure a uniform-in-𝑁 stability bound by adapting alterna-
tive notions of resolvent stability or strong stability. We discuss the failure of different approaches
in §1.2 and further elaborate in §2 below. Alternatively, there were different approaches to
secure the uniform-in-𝑁 stability bound for restricted classes of 𝕃𝑁 ’s, satisfying different coer-
civity restrictions. We mention the strong stability preserving (SSP) theory which necessitates
Δ𝑡𝜎(𝕃𝑁) ⊂ {𝑧 ∶ |1 + 𝑧| ⩽ 1} [18] (see §3.4 below), and the wedge condition,Δ𝑡𝜎(𝕃𝑁) ⊂ 𝒜 ∩ {𝑧 ∶|arg𝑧| ⩾ 𝜋 − 𝛼}with 𝛼 < 𝜋∕2 [57]. The uniform-in-𝑁 stability question for general semi-bounded
𝕃𝑁 ’s remained open. This is addressed in our first main result in Theorem 4.2 below, stating that if

Δ𝑡𝑊(𝕃𝑁) ⊂ 𝒜,

then stability follows with uniformly bounded 𝐾𝕃. Here, 𝑊(𝕃𝑁) = {⟨𝕃𝑁𝐱, 𝐱⟩ ∶ |𝐱| = 1} is the
numerical range of 𝕃𝑁 (associated with general inner product ⟨⋅, ⋅⟩; consult §3.1 below). Concrete
examples for applications of this RK stability result are given in §5, in the context of methods of
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lines for hyperbolic transport equations, where we recover classical old results and derive some
newones. In this case,we explicitly compute𝑊(𝕃𝑁) for circulant or almost circulantmatrices. But
in general, the structure of𝑊(𝕃𝑁) as a set in the complex plane is not as accessible as the discrete
spectrum 𝜎(𝕃𝑁). This is addressed in our second main Theorem 4.4. Consider RKmethod whose
region of absolute stability contains a non-trivial interval along the imaginary axis,𝒜 ⊃ [−𝑖𝑅, 𝑖𝑅].
Then, there exists a constant  > 0 (depending on 𝑅) so that the Courant–Friedrichs–Levy (CFL)-
like condition Δ𝑡‖𝕃𝑁‖ ⩽  implies Δ𝑡𝑊(𝕃𝑁) ⊂ 𝒜, and uniform-in-𝑁 stability follows.

1.2 The quest for stability

We consider systems of ODEs,

𝐲̇ = 𝐅(𝑡, 𝐲),

which govern an 𝑁-vector of unknown solution, 𝐲(𝑡) ∈ ℝ𝑁 , subject to prescribed initial data,
𝐲(𝑡0) = 𝐲0. As a canonical example for one of the most widely used numerical integrators we
mention the 4-stage RK method, which computes an approximate solution, {𝐮𝑛 = 𝐮(𝑡𝑛)}𝑛>0, at
successive time steps 𝑡𝑛+1 ∶= 𝑡𝑛 + Δ𝑡 [23, §II.1],

𝐮𝑛+1 = 𝐮𝑛 +
Δ𝑡

6

(
𝐤1 + 2𝐤2 + 2𝐤3 + 𝐤4

) ⎧⎪⎪⎨⎪⎪⎩

𝐤1 = 𝐅(𝑡𝑛, 𝐮𝑛)

𝐤2 = 𝐅
(
𝑡𝑛+1∕2, 𝐮𝑛 + (Δ𝑡∕2)𝐤1

)
𝐤3 = 𝐅

(
𝑡𝑛+1∕2, 𝐮𝑛 + (Δ𝑡∕2)𝐤2

)
𝐤4 = 𝐅

(
𝑡𝑛+1, 𝐮𝑛 + Δ𝑡𝐤3

)
.

(1.1)

The linearized stability analysis examines the behavior of (1.1) for linear systems, 𝐅(𝑡, 𝐲) = 𝕃𝑁𝐲,

𝐲̇ = 𝕃𝑁𝐲, (1.2)

where (1.1) is reduced to

𝐮𝑛+1 =
(
𝕀 + Δ𝑡𝕃𝑁 +

1

2
(Δ𝑡𝕃𝑁)

2
+

1

6
(Δ𝑡𝕃𝑁)

3
+

1

24
(Δ𝑡𝕃𝑁)

4
)
𝐮𝑛, 𝑛 = 0, 1, … . (RK4)

The corresponding iterations for a general 𝑠-stage explicit RK method take the form

𝐮𝑛+1 = 𝑠(Δ𝑡𝕃𝑁)𝐮𝑛, 𝑛 = 0, 1, 2, … , 𝑠(𝑧) ∶=
𝑠∑

𝑘=0

𝑎𝑘𝑧
𝑘, 𝑎𝑘 ∈ ℝ, 𝑎𝑠 ≠ 0. (1.3)

Different {𝑎𝑘}𝑠𝑘=0 dictate different RK methods with emphasis on different aspects of accuracy,
efficiency and stability. The resulting 𝑠-stage RK methods (1.3), involve 𝑁 ×𝑁 matrices, denoted
𝕃𝑁 to highlight the fact that they are parameterized with respect to 𝑁. As already noted above,
such large matrices are often encountered in applications, and we therefore pay particular atten-
tion to the question of RK stability that is uniformwith respect to the increasingly large dimension
𝑁.
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Following [65, §2], we consider (1.2) for the class of semi-bounded 𝕃𝑁 ’s, namely — 𝕃𝑁 ’s
for which there exist constants 𝜂, 𝐾ℍ > 0 independent of 𝑁, and uniformly positive-definite
symmetrizers, ℍ𝑁 ’s, such that1,

ℍ𝑁𝕃
⊤
𝑁 + 𝕃𝑁ℍ𝑁 ⩽ 2𝜂ℍ𝑁, 0 < 𝐾−1

ℍ
⩽ ℍ𝑁 ⩽ 𝐾ℍ.

It follows that the solutions of the corresponding semi-bounded ODEs (1.2) subject to arbitrary
initial data 𝐲(0) = 𝐲0, satisfy

|𝐲(𝑡)|𝓁2 ⩽ 𝐾ℍ𝑒
𝜂𝑡|𝐲0|𝓁2 .

Replacing 𝕃𝑁 with 𝕃𝑁− 𝜂𝕀, allows us to consider without loss of generality the case 𝜂 = 0,
corresponding to negative definite 𝕃𝑁 ’s,

ℍ𝑁𝕃
⊤
𝑁 + 𝕃𝑁ℍ𝑁 ⩽ 0, 0 < 𝐾−1

ℍ
⩽ ℍ𝑁 ⩽ 𝐾ℍ. (1.4)

Solutions of ODE governed by such negative2 𝕃𝑁 ’s remain uniformly bounded in time relative to
their initial data 𝐲0,

|𝐲(𝑡)|𝓁2 ⩽ 𝐾ℍ|𝐲0|𝓁2 . (1.5)

Stability of RK scheme. The notion of stability of RK schemes requires the numerical solution
to satisfy the bound corresponding to (1.5). To this end, one is focused on a family of negative 𝕃𝑁 ’s
parametrized by their dimension𝑁. The 𝑠-stage RK scheme (1.3) is stable, if there exist constants,
𝐾𝕃 > 0 and 𝑠 > 0 independent of 𝑁, such that solutions of (1.3) subject to arbitrary initial data
𝐮0 satisfy, for small enough time step Δ𝑡,

Stability of RK scheme: |𝐮𝑛|𝓁2 ⩽ 𝐾𝕃|𝐮0|𝓁2 , 𝑛 = 0, 1, 2, … . (1.6)

The restriction of having small enough time step is encoded in terms of the bound

Δ𝑡 ⋅ ‖𝕃𝑁‖ ⩽ 𝑠; (1.7)

in the context of method of lines, the time-step restriction is related to the celebrated CFL
condition [5], andwe shall therefore often refer to the time-step restriction (1.7) as aCFL condition.
The notion of stability encoded in (1.6) amounts to the question of power-boundedness of

𝑠(Δ𝑡𝕃𝑁),
‖𝑛

𝑠 (Δ𝑡𝕃𝑁)‖ ⩽ 𝐾𝕃, 𝑛 = 0, 1, 2, … . (1.8)

Remark 1.1 (Stability and linearization). The general notion of stability for semi-bounded 𝕃𝑁 ’s,
limits the exponential stability bound to a finite time interval,

|𝐮𝑛|𝓁2 ⩽ 𝐾𝕃𝑒
𝜂𝑡|𝐮0|𝓁2 , 𝑛 ⋅ Δ𝑡 ⩽ 𝑡.

1 Throughout the paper, we use 𝐾□ to denote different constants which are independent of 𝑁.
2 Throughout the work, we use the term “negative” for short of “negative definite.”
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Since we restrict attention to negative 𝕃𝑁 ’s, we may as well let 𝑛 ∈ ℕ. This notion of stability is
invariant against low-order perturbations [30, 59], and therefore allows to recover the stability of
RK schemes for smooth solutions of fully nonlinear problems, 𝐲̇ = 𝐅(𝑡, 𝐲). To this end, one can
linearize and freeze coefficients at arbitrary 𝑡 = 𝑡∗, arriving at the linearized system (1.2),

𝐲̇ = 𝕃𝑁𝐲 with 𝕃𝑁 =
𝜕𝐅

(
𝑡∗, 𝐲(𝑡∗)

)
𝜕𝐲

.

We shall not dwell on the details, expect for referring to our discussion on stability in presence of
variable coefficients in §5.2 below. This motivates our focus on the question of linearized stability,
where 𝕃𝑁 is a substitute for the 𝑁 ×𝑁 gradient matrix frozen at arbitrary state.

1.3 Spectral stability analysis

The standard approach to address the question of power-boundedness is spectral analysis, in
which (1.8) requiresmax1⩽𝑘⩽𝑁 |𝜆𝑘(𝑠(Δ𝑡𝕃𝑁))| ⩽ 1. By the spectral mapping theorem,

𝜆𝑘
(𝑠(Δ𝑡𝕃𝑁)) = 𝑠(Δ𝑡𝜆𝑘(𝕃𝑁)), (1.9)

which leads to the necessary stability condition, requiring small enough time-step dictated by the
region of absolute stability associated with (1.3),

Δ𝑡 ⋅ 𝜆𝑘(𝕃𝑁) ∈ 𝒜𝑠, 𝑘 = 1, 2, … ,𝑁, 𝒜𝑠 ∶= {𝑧 ∈ ℂ ∶ |𝑠(𝑧)| ⩽ 1}. (1.10)

Conversely, consider the favorite scenario in which 𝕃𝑁 is diagonalizable,

𝕋𝑁𝕃𝑁𝕋
−1
𝑁 = Λ, Λ =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜆1(𝕃𝑁) 0 … … 0

0 𝜆2(𝕃𝑁) ⋱ ⋮

⋮ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ 0

0 … … 0 𝜆𝑁(𝕃𝑁)

⎤⎥⎥⎥⎥⎥⎥⎦
.

Then 𝑠(Δ𝑡𝕃𝑁) = 𝕋−1𝑁 𝑠(Δ𝑡Λ)𝕋𝑁 and (1.10) implies

‖𝑛
𝑠 (Δ𝑡𝕃𝑁)‖ = ‖𝕋−1𝑁 𝑛

𝑠 (Δ𝑡Λ)𝕋𝑁‖ ⩽ ‖𝕋−1𝑁 ‖ ⋅ ‖𝕋𝑁‖. (1.11)

This guarantees the stability of RK schemes for systems of finite fixed dimension.3 However, here
we insist that the stability sought in (1.6) will apply uniformly for increasingly large systems,
and since the condition number on the right of (1.11), ‖𝕋−1𝑁 ‖ ⋅ ‖𝕋𝑁‖, may grow with 𝑁, spec-
tral condition (1.10) is not enough to secure the desired uniform-in-𝑁 stability bound. Indeed, as
we elaborate in §2.1 below, the general question of stability, uniformly in 𝑁, cannot be addressed
solely in terms of spectral analysis.

3 The precise necessary and sufficient characterization for power-boundedness of a single matrix, ‖𝑛‖ ⩽ 𝐾, requires that
the eigenvalues 𝜆𝑘() are inside the unit disc and those on the unit circle are simple or non-defective in the sense of having
fully diagonalizable eigenspace; the constant 𝐾 may still depend on the dimension of  .
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1.4 Resolvent stability

Wenow appeal to a stronger notion of stability of RKmethod. An 𝑠-stage RKmethod𝑠(⋅) is stable
if the corresponding RK schemes (1.3) are stable for all negative 𝕃𝑁 ’s,

Stability of RK method: ‖𝑛
𝑠 (Δ𝑡𝕃𝑁)‖ ⩽ 𝐾𝕃 for all negative𝕃′𝑁s. (1.12)

Observe that we are making a distinction between the stability of RK scheme—which examines
the boundedness of RK protocol 𝑛

𝑠 (Δ𝑡𝕃𝑁) for a specific family of negative 𝕃𝑁 ’s, vs. the stability
of RKmethod—which examines the behavior of RK protocol 𝑛

𝑠 (Δ𝑡 ⋅), for all negative 𝕃𝑁 ’s.
This stronger notion of stability restricts the class of stable RK methods. In particular, their

stability question should apply to the scalar ODEs, 𝑦̇ = 𝜆𝑦, for all negative 𝑅𝑒 𝜆 ⩽ 0, which in turn
implies that (1.10) must hold for purely imaginary 𝜆 = 𝑖𝜎, so that |𝑠(𝑖Δ𝑡𝜎)| ⩽ 1, for small enough
step-size, Δ𝑡. In other words, a stable RK methodmust satisfy the following interval condition.

Definition 1.2 Imaginary interval condition4. A Runge–Kutta method is said to satisfy the
imaginary interval condition if there exists a constant 𝑅𝑠 > 0 such that

|𝑠(𝑖𝜎)| ⩽ 1, −𝑅𝑠 ⩽ 𝜎 ⩽ 𝑅𝑠. (1.13)

In other words, the region of absolute stability of a stable RK method must contain a non-
trivial interval along the imaginary axis [−𝑖𝑅𝑠, 𝑖𝑅𝑠] ⊂ 𝒜𝑠. This secures the stability of RK method
for scalar hyperbolic ODEs, 𝑦̇ = 𝑖𝜎𝑦, with small enough step-size Δ𝑡𝜎 < 𝑅𝑠.
The interval condition excludes the standard 1-stage forward Euler method (for historical

perspective of Euler’s method which dates back to 1768 see [69, §1]),

Forward Euler: 𝐮𝑛+1 = (𝕀 + Δ𝑡𝕃𝑁) 𝐮𝑛, (RK1)

for which1(𝑧) = 1 + 𝑧 ⇝ |1(𝑖𝜎)| > 1 for all 𝜎 ≠ 0. The imaginary interval condition (1.13) also
excludes the 2-stage Heun’s method [9, §8.3.3] (also known as modified Euler method),

Heun method: 𝐮𝑛+1 =
(
𝕀 + Δ𝑡𝕃𝑁 +

1

2
(Δ𝑡𝕃𝑁)

2
)
𝐮𝑛, (RK2)

since 2(𝑧) = 1 + 𝑧 +
1

2
𝑧2 ⇝ |2(𝑖𝜎)| > 1 for all 𝜎 ≠ 0.

On the other hand, the 3-stage Kutta method,

Kutta method: 𝐮𝑛+1 =
(
𝕀 + Δ𝑡𝕃𝑁 +

1

2
(Δ𝑡𝕃𝑁)

2
+
1

6
(Δ𝑡𝕃𝑁)

3
)
𝐮𝑛, (RK3)

aswell as the 4-stageRunge–Kuttamethod, (RK4), and its higher-order embedded versionRK45 of
Dormand-Prince method [11, 23, 35], do satisfy the interval condition with 𝑅3 =

√
3, and respec-

tively, 𝑅4 = 2
√
2; this is depicted in Figure 1. A precise characterization of general 𝑠-stage RK

methods satisfying the interval condition was given in [35, Theorem 3.1] and will be recalled in
(4.8b) below.

4 So-called “local stability along the imaginary line” in [35, Definition 2.1].
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F IGURE 1 Regions of absolute stability,𝒜𝑠, 𝑠 = 1, 2 (left), and 𝑠 = 3, 4 (right).

The interval condition 1.2 is necessary for stability of a RKmethod. Kreiss andWu [36], proved
the converse in the sense that the interval condition is sufficient for resolvent stability, namely—
(1.13) implies that the following holds.

Definition 1.3 (Resolvent stability). The RK method is resolvent stable if there exist constants
𝐾𝑅 > 0 and 0 < 𝑠 < 𝑅𝑠, independent of 𝑁, such that for small step-size,

‖(𝑧𝕀 − 𝑠(Δ𝑡𝕃𝑁))−1‖ ⩽ 𝐾𝑅|𝑧| − 1
, ∀|𝑧| > 1, Δ𝑡 ⋅ ‖𝕃𝑁‖ ⩽ 𝑠. (1.14)

So the interval condition implies resolvent stability which in turn guarantees the stability of RK
schemes for systems of finite fixed dimension, in view of the Kreiss matrix theorem [30, 51, §4.9].
Indeed, in [62] and its improvement [42], it was proved that (1.14) implies

‖𝑛
𝑠 (Δ𝑡𝕃𝑁)‖ ⩽ 2𝑒𝐾𝑅𝑁, 𝑛 = 1, 2, … . (1.15)

However, as we shall elaborate in §2.2 below, the 𝑁-dependent bound on the right cannot be
completely removed and hence resolvent stability does not secure the desired stability uniformly
for arbitrarily large 𝑁.

1.5 Strong stability

A Runge–Kutta scheme (1.3) is strongly stable if there exists 𝐾 > 0 independent of 𝑁 such that
𝑠(Δ𝑡𝕃𝑁) is uniformly similar to a contraction,

‖𝑁𝑠(Δ𝑡𝕃𝑁) −1
𝑁 ‖ ⩽ 1, ‖ −1

𝑁 ‖ ⋅ ‖𝑁‖ ⩽ 𝐾 . (1.16)

A strongly stable RK scheme is clearly stable, for

‖𝑛
𝑠 (Δ𝑡𝕃𝑁)‖ = ‖ −1

𝑁

(𝑁𝑠(Δ𝑡𝕃𝑁) −1
𝑁

)𝑛𝑁‖ ⩽ ‖ −1
𝑁 ‖ ⋅ ‖𝑁‖ ⩽ 𝐾 (1.17)

The choice 𝑁 = 𝕋𝑁 recovers (1.11) as a special case of (1.17).
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To secure strong stability it remains to construct a uniformly bounded symmetrizer 𝑁 ∶=

 ∗
𝑁𝑁 with 0 < 𝐾−1 ⩽ 𝑁 ⩽ 𝐾 . We addressed this issue in [65], proving the strong stability of
the 3-stage RK method (RK3) with symmetrizer 𝑁 = ℍ𝑁 and 3 = 1, thus providing the first
example of a RK method which is stable uniformly for arbitrarily large system of ODEs. It was
later extended to all 𝑠-stage RK methods of order 𝑠 = 3[mod4], [61]. The question arises whether
strong stability can be extended using proper symmetrizers,𝑁 , for other 𝑠-stage RKmethods for
arbitrary 𝑠? In [65] we conjectured that the 4-stage (RK4) fails strong stability in the sense that it
is not uniformly similar to a contraction, or equivalently — as outlined in §2.3 below, that there
is no symmetrizer𝑁 ∶=  ∗

𝑁𝑁 such that (1.16)𝑠=4 holds. This was confirmed in [60, Proposition
1.1] and was later extended in [1, Theorem 2], where it was shown that strong stability fails for all
𝑠-stage 𝑝-order accurate5 RK methods with 𝑠 = 𝑟 ∈ 4ℕ.

Remark 1.4. In fact, the issue of RK4 stability is more subtle as ‖2𝑛
𝑠 (Δ𝑡𝕃𝑁)‖ ⩽ 1, which can be

interpreted to say that the 8-stage RK4 is strongly stable. We refer the interested reader to [60, 61]
and the references therein.

The stability question for RK schemes. We come out from the above discussion, lacking a
definitive answer to the question of stability of RK schemes/methods for arbitrarily large systems
of ODEs. Thus, for example, the stability question for the widely used RK4 remains open. At this
stage, the three different approaches — spectral analysis, resolvent condition and strong stability
failed to determine whether RK4 method for example, is stable uniformly in 𝑁 for the general
class of negative 𝕃𝑁 ’s. We therefore raise the question:

Are theRunge–Kuttamethods (1.3) stable for arbitrarily large semi-bounded systems?

The title of the paper is an affirmative answer to this question. The answer is given in §4 in
terms of the numerical range of 𝕃𝑁 .

2 SPECTRAL, RESOLVENT, AND STRONG STABILITY ANALYSIS
ARE NOT ENOUGH

In this section,we further elaboratewith specific counterexamples, on the failure of spectral analy-
sis, resolvent condition and strong stability to capture the uniform-in-𝑁 stability of general 𝑠-stage
RK schemes/methods. Spectral and resolvent analysis are shown to be tooweak to secure stability,
while strong stability argument is too restrictive.

2.1 Spectral analysis is not enough

We recall the spectral analysis led to the necessary stability condition (1.10)

Δ𝑡 ⋅ 𝜆𝑘(𝕃𝑁) ⊂ 𝒜𝑠, 𝑘 = 1, 2, … ,𝑁.

5 The RKmethod (1.3) is 𝑟-order accurate if |𝑒𝑧 − 𝑠(𝑧)| = (|𝑧|𝑟+1), |𝑧|≪ 1; see (4.8a) below. Thus, 𝑟 is the largest index
for which 𝑎𝑘 = 1∕𝑘! for 𝑘 = 1, 2, … , 𝑟.
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As noted above, this spectral condition is not sufficient to secure stability in case of ill-conditioned
eigensystems, ‖𝕋−1𝑁 ‖ ⋅ ‖𝕋𝑁‖, which grows with𝑁. An alternative approach, trying to circumvent
this difficulty of ill-conditioning is to use a unitary triangulation

𝑠(Δ𝑡𝕃𝑁) = 𝕌∗𝑁
(
Λ +ℝ𝑁

)
𝕌𝑁, Λ ∶= 𝑠(Δ𝑡Λ),

where Λ and Λ are the diagonals made of the eigenvalues of 𝕃𝑁 and, respectively, 𝑠(Δ𝑡𝕃𝑁),
and ℝ𝑁 is a nilpotent upper triangular matrix, (ℝ𝑁)𝑖𝑗 = 0, 𝑗 ⩽ 𝑖. Since ‖𝑛

𝑠 (Δ𝑡𝕃𝑁)‖ = ‖(Λ +
ℝ𝑁)

𝑛‖, it remains to study the power-boundedness of the triangular matrix Λ +ℝ𝑁 . But we
claim that even a most favorable scenario, in which the spectral stability analysis (1.10) secures
the eigenvalues strictly inside the unit disc,

𝜃 ∶= max
1⩽𝑘⩽𝑁

|𝑠(Δ𝑡𝜆𝑘(𝕃𝑁))| < 1, (2.1)

will not suffice to guarantee the stability of RK method. Indeed, we may assume without
restriction that ℝ𝑁 is arbitrarily small by its further re-scaling,6 so that

‖𝑆𝛿ℝ𝑁𝑆
−1
𝛿
‖ =‖{ℝ𝑖𝑗𝛿

𝑖−𝑗
𝜖 }𝑗>𝑖‖ ⩽ 𝜖,

𝑆𝛿 =

⎡⎢⎢⎢⎢⎢⎣

𝛿𝜖 0 … 0

0 𝛿2𝜖 ⋱ ⋮

⋮ ⋱ ⋱ ⋮

0 … … 𝛿𝑁𝜖

⎤⎥⎥⎥⎥⎥⎦
, 𝛿𝜖 ∶=

𝜖‖ℝ𝑁‖𝐹 .

Here, an arbitrary 𝜖 > 0 is at our disposal to be determined below. It follows that

‖𝑛
𝑠 (Δ𝑡𝕃𝑁)‖ = ‖𝕌∗𝑁𝑆−1𝛿 (

Λ + 𝑆𝛿ℝ𝑁𝑆
−1
𝛿

)𝑛
𝑆𝛿𝕌𝑁‖ ⩽ ‖𝑆−1

𝛿
‖ × (‖Λ‖ + 𝜖)𝑛 × ‖𝑆𝛿‖.

By assumption, ‖Λ‖ = 𝜃 < 1. Set 𝜖 ∶= 1∕2(1 − 𝜃), we then end up with the stability bound

‖𝑛
𝑠 (Δ𝑡𝕃𝑁)‖ ⩽ 𝛿1−𝑁𝜖

(
1 + 𝜃

2

)𝑛

=
(2‖ℝ𝑁‖𝐹

1 − 𝜃

)𝑁−1(1 + 𝜃

2

)𝑛
. (2.2)

This bound secures the stability of finite dimensional systems – in fact, it recovers the well-known
fact thatmatrices of finite fixed dimensionwith eigenvalues strictly inside the unit disc have expo-
nentially decreasing iterates. But the argument breaks down when we examine the dependence
on 𝑁, since the bound (2.2) is not uniform in 𝑁: for 𝑛 = 𝑁 − 1, for example, we find that unless
ℝ𝑁 is sufficiently small,7 then there is an exponential growth in 𝑁,

‖𝑛
𝑠 (Δ𝑡𝕃𝑁)‖ ⩽ (2‖ℝ𝑁‖𝐹

1 − 𝜃

)𝑁−1(1 + 𝜃

2

)𝑛||𝑛=𝑁−1 =
(‖ℝ𝑁‖𝐹 1 + 𝜃

1 − 𝜃

)𝑁−1

. (2.3)

6 ‖ ⋅ ‖𝐹 refers to Frobenius norm, ‖𝐴‖2𝐹 = trace(𝐴⊤𝐴).
7 To avoid an exponential growth of the upper-bound in (2.2) requires ‖ℝ𝑁‖𝐹 ⩽ 1−𝜃

1+𝜃
; a more delicate tuning of the scaling

parameter 𝛿𝜖 shows that uniform bound is achieved for ‖ℝ𝑁‖𝐹 < 1 − 𝜃.



10 TADMOR

This bound is sharp in the sense that the power-growth hinted on the right of (2.3) is realized by
the powers of the increasingly large 𝑁 ×𝑁 Jordan blocks

‖𝕁𝑛𝑞‖ ∼ (
2

1−𝑞

)𝑁(
1+𝑞

2

)𝑛
, 𝕁𝑞 ∶=

⎡⎢⎢⎢⎢⎢⎣

−𝑞 1 + 𝑞 … … 0

0 −𝑞 1 + 𝑞 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋮

0 … ⋱ −𝑞 1 + 𝑞

0 … … … −𝑞

⎤⎥⎥⎥⎥⎥⎦
. (2.4)

Although |𝜆𝑘(𝕁𝑞)| < 1 for −1 < 𝑞 < 1, there is a non-uniform growth of ‖𝕁𝑛𝑞‖ with 0 < 𝑞 < 1,
corresponding to 𝑞 = 𝜃 in (2.3), when 𝑛 ∼ 𝑁 ↑ ∞. These increasingly large Jordan blocks realize
the extreme case of ill-conditioning warned in (1.11).

2.1.1 Instability of forward Euler scheme

The extremal example (2.4) is not just of academic interest. The following classical example [51,
§6.6], [36, §3], [65, §5.1] sheds light on what can go wrong with spectral analysis. Consider the
transport equation with fixed speed 𝑎 > 0{

𝑦𝑡(𝑥, 𝑡) = 𝑎𝑦𝑥(𝑥, 𝑡), (𝑡, 𝑥) ∈ ℝ+ × (0, 1)

𝑦(1, 𝑡) = 0.
(2.5)

Its spatial part is discretized using one-sided spatial differences on equi-spaced grid, {𝑥𝜈 ∶=
𝜈Δ𝑥}𝑁𝜈=0, Δ𝑥 =

1∕𝑁, covering the interval [0,1],

⎧⎪⎨⎪⎩
𝑑

𝑑𝑡
𝑦(𝑥𝜈, 𝑡) = 𝑎

𝑦(𝑥𝜈+1, 𝑡) − 𝑦(𝑥𝜈, 𝑡)

Δ𝑥
, 𝜈 = 0, 1, … ,𝑁 − 1,

𝑦(𝑥𝑁, 𝑡) = 0.

(2.6)

This amounts tomethod of lines for the𝑁-vector of unknowns, 𝐲(𝑡) ∶=
(
𝑦(𝑥0, 𝑡), … , 𝑦(𝑥𝑁−1, 𝑡)

)⊤
,

governed by the 𝑁 ×𝑁 semi-discrete system in terms of the forward-difference operator 𝔻+
𝑁 ,

𝐲̇(𝑡) = 𝑎𝔻+
𝑁𝐲, 𝔻+

𝑁 ∶=
1

Δ𝑥

⎡⎢⎢⎢⎢⎢⎢⎣

−1 1 … … 0

0 −1 1 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋮

0 … ⋱ −1 1

0 … … … −1

⎤⎥⎥⎥⎥⎥⎥⎦
. (2.7)

Observe that 𝔻+
𝑁 is semi-bounded — in fact it is strictly dissipative in the sense that

(𝔻+
𝑁)

⊤ + 𝔻+
𝑁 ⩽ −2

(
1 − cos

( 𝜋

𝑁 + 1

))
𝕀𝑁×𝑁.
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This system (2.7) is integrated using one-stage Forward Euler method, (RK1), augmented with
boundary condition 𝑢(𝑥𝑁, 𝑡) = 0,

𝐮𝑛+1 = 1(Δ𝑡 ⋅𝑎𝔻+
𝑁)𝐮𝑛, 𝐮𝑛 ∶=

(
𝑢(𝑥0, 𝑡

𝑛), … , 𝑢(𝑥𝑁−1, 𝑡
𝑛)
)⊤
, 𝑛 = 0, 1, 2, … , (2.8)

which encodes the fully discrete finite difference scheme

⎧⎪⎨⎪⎩
𝑢(𝑥𝜈, 𝑡

𝑛+1) − 𝑢(𝑥𝜈, 𝑡
𝑛)

Δ𝑡
= 𝑎

𝑢(𝑥𝜈+1, 𝑡
𝑛) − 𝑢(𝑥𝜈, 𝑡

𝑛)

Δ𝑥
, 𝜈 = 0, 1, … ,𝑁 − 1,

𝑢(𝑥𝑁, 𝑡
𝑛+1) = 0.

(2.9)

The computation proceeds with hyperbolic scaling of fixed mesh ratio, Δ𝑡∕Δ𝑥. This is precisely
the regime𝑁 ∼ 𝑛 indicated in (2.3), in which case it is known that the forward Euler scheme (2.9)
is unstable, if it violates the CFL condition 0 < 𝑎Δ𝑡∕Δ𝑥 < 1. Observe that 1(Δ𝑡 ⋅𝑎𝔻+

𝑁) amounts
to a Jordan block,

1(Δ𝑡 ⋅𝑎𝔻+
𝑁) = 𝕀 + Δ𝑡 ⋅𝑎𝔻+

𝑁 = 𝕁𝑞, 𝑞 = 𝑎𝛿 − 1, 𝛿 ∶=
Δ𝑡

Δ𝑥
.

Therefore, the instability of 𝕁𝑞 with 𝑞 ∈ (0, 1] follows, corresponding to 1 < 𝑎𝛿 < 2, which was
already claimed by the bound (2.4). In particular, the RK1 scheme (2.8) is unstable, despite having|𝜆𝑘(1(Δ𝑡 ⋅𝑎𝔻+

𝑁)| = |𝑞| < 1.
Now consider integration of (2.7) using 4-stage (RK4). Spectral stability analysis

|𝜆𝑘(4(Δ𝑡 ⋅𝑎𝔻+
𝑁))| = |4(−𝑎𝛿)| ⩽ 1,

leads to theCFL condition, 0 < 𝑎𝛿 ⩽ 𝑅4 = 2
√
2, which fails to guarantee stability, since it does not

capture the power-growth of the increasingly large Jordan block 𝑎𝛿𝔻+
𝑁 . We conclude that even in

themost favorable scenario (2.1), spectral analysis is not enough to secure a uniform-in-𝑁 stability
of RK methods for increasingly large systems.

2.2 Resolvent stability is not enough

Recall that the imaginary interval condition (1.13) is necessary for the stability of RK method.
Kreiss andWu [36, Theorem 3.6] proved that the converse holds in the sense of resolvent stability.
Here, resolvent stability is interpreted in the sense that there exists a constant𝐾𝑅 > 0 independent
of 𝑁, such that for all negative 𝕃𝑁 ’s, if the time step is small enough, Δ𝑡 ⋅ ‖𝕃𝑁‖ ⩽ 𝑠, then the
corresponding 𝑠-stage RK method satisfies

‖(𝑧𝕀 − 𝑠(Δ𝑡𝕃𝑁))−1‖ ⩽ 𝐾𝑅|𝑧| − 1
, ∀|𝑧| > 1. (2.10)

The size of the time step is dictated by region of absolute stability, 𝒜𝑠, specifically — 𝑠 ⩽ 𝑅𝑠 is
the radius of largest half disc inscribed inside𝒜𝑠,

𝐵−𝑠 (0) ∶= {𝑧 ∶ 𝑅𝑒 𝑧 < 0, |𝑧| < 𝑠} ⊂ 𝒜𝑠, 𝒜𝑠 =
{
𝑧 ∈ ℂ ∶ |𝑠(𝑧)| ⩽ 1

}
.
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The notion of stability in the sense of power-boundedness, (1.8), implies that the resolvent con-
dition holds with 𝐾𝑅 = 𝐾𝕃. The Kreiss Matrix Theorem [30, 51, §4.9], states that the converse
holds for a family of matrices with a fixed dimension. Yet this does not enable us to conclude
the uniform-in-𝑁 power-boundedness stability of RKmethod sought in (1.12), since the resolvent
bound (2.10) may still allow growth ‖𝑛

𝑠 (Δ𝑡𝕃𝑁)‖ ≲ 𝑁𝐾𝑅. In [62] we conjectured that this linear
dependence on 𝑁 is the best possible. This was confirmed in [42] proving that

sup
𝐴∈𝑀𝑁(ℂ)

sup|𝑧|>1(|𝑧| − 1)‖(𝑧𝕀 − 𝐴)−1‖
sup𝑛⩾1 ‖𝐴𝑛‖ ∼ 𝑒𝑁.

The above linear-growth-in-𝑁 behavior was exhibited by a sequence of increasingly large 𝑁 ×𝑁

Jordan blocks, 𝐴𝑁 = 𝑁𝕁0. We observe that the 𝐴𝑁 ’s in this case are not resolvent bounded uni-
formly in 𝑁; it is only the ratio on the left that exhibits the sharp linear bound in 𝑁. A concrete
example of a family of matrices in 𝑀𝑁(ℂ) which are resolvent stable yet their powers admit
logarithmic growth in 𝑁 was constructed in [44] and was improved to linear growth in 𝑁 [27].

Remark 2.1 (Dissipative resolvent condition). In [63] we considered a stronger resolvent condition
of the form

‖(𝑧𝕀 − 𝑠(Δ𝑡𝕃𝑁))−1‖ ⩽ 𝐾𝑅|𝑧 − 1| , ∀{𝑧 ∶ |𝑧| ⩾ 1, 𝑧 ≠ 1}. (2.11)

In [52] it was proved that (2.11) implies 𝑛−1‖𝑛
𝑠 ‖ 𝑛→∞

⟶ 0. In [63] we stated the improved loga-
rithmic bound ‖𝑛

𝑠 (Δ𝑡𝕃𝑁)‖ ≲ log(𝑛); this was proved in [66]. More on the dissipative resolvent
(2.11) and related notions of stability can be found in [53, 67, 68]. The dissipative resolvent bound
(2.11) reflects a flavor of coercivity condition which will be visited in §3.3 below; however, it does
not secure uniform-in-𝑁 power-boundedness. A more precise notion of a dissipative resolvent
condition of order 2𝑟 > 0 requires the existence of 𝜂𝑟 > 0 such that

‖(𝑧𝕀 − 𝑠(Δ𝑡𝕃𝑁))−1‖ ⩽ 𝐾𝑅

dist{𝑧,Ω𝑟}
∀𝑧 ∉ Ω𝑟, ∶= {𝑤 ∶ |𝑤| + 𝜂𝑟|𝑤 − 1|2𝑟 ⩽ 1}. (2.12)

The resolvent bound (2.12) reflects the classical notion of “dissipativity of order 2𝑟” due to Kreiss
[31]. It remains an open question whether (2.12) implies uniform-in-𝑁 power-boundedness.

2.3 Strong stability is not enough

The contractivity stated in (1.16), ‖𝑁𝑠(Δ𝑡𝕃𝑁) −1
𝑁 ‖ ⩽ 1 with uniformly bounded ‖ −1

𝑁 ‖ ⋅‖𝑁‖ ⩽ 𝐾 , is equivalent to strong stability in the sense that there exist uniformly positive definite
symmetrizer𝑁 and 𝐾 > 0, such that

⊤
𝑠 (Δ𝑡𝕃𝑁)𝑁𝑠(Δ𝑡𝕃𝑁) ⩽ 𝑁, 0 <

1

𝐾 ⩽ 𝑁 ⩽ 𝐾 . (2.13)
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Just set𝑁 =  ∗
𝑁𝑁 with uniformly bounded 𝐾 = 𝐾 . In other words, (2.13) tells us that8

‖𝑠(Δ𝑡𝕃𝑁)‖𝑁
⩽ 1, Δ𝑡 ⋅ ‖𝕃𝑁‖ ⩽ 𝑠. (2.14)

This coincides with the usual notion of strong stability,9 for example [48, 65]. It follows that a
strongly stable RK scheme, 𝐮𝑛+1 = 𝑠(Δ𝑡𝕃𝑁)𝐮𝑛, satisfies

|𝐮𝑛+1|𝑁
= |𝑠(Δ𝑡𝕃𝑁)𝐮𝑛|𝑁

⩽ |𝐮𝑛|𝑁
⩽ … ⩽ |𝐮0|𝑁

,

and hence the RK iterations satisfy the uniform-in-𝑁 stability bound, |𝐮(𝑡𝑛)|𝓁2 ⩽ 𝐾|𝐮0|𝓁2 . The
strong stability of the 3-stage RK method (RK3) with symmetrizer 𝑁 = ℍ𝑁 and 3 = 1, was
proved in [65] and was later extended in [61, Theorem 4.2] to all 𝑠-stage RK methods of order
𝑠 = 3[mod4], namely—for small enough time step, Δ𝑡 ⋅ ‖𝕃𝑁‖ ⩽ 𝑠, there holds,

‖𝑠(Δ𝑡𝕃𝑁)‖ℍ𝑁 ⩽ 1, 𝑠(𝑧) =
𝑠∑

𝑘=0

𝑧𝑘

𝑘!
, 𝑠 = 3[mod4]. (2.15)

As mentioned above, this line of arguing stability by construction of the strong stability sym-
metrizer, fails to extend to 𝑠-stage RK methods with 𝑠 ∈ 4ℕ, [1, 49, 60]. But this does not mean
that the latter RK methods are necessarily unstable. Indeed, the general question whether sta-
ble methods are necessarily strongly stable was addressed in [13]—they are not. It leaves open
the possibility that the question stability can be pursued by other approaches—other than strong
stability. This will be addressed in the next section.

3 NUMERICAL RANGE AND STABILITY OF COERCIVE
RUNGE—KUTTA SCHEMES

3.1 Numerical range

We let 𝓁2𝐻(ℂ
𝑁) denote the weighted Euclidean space associated with a given positive definite

matrix𝐻 > 0, and equipped with

⟨𝐱, 𝐲⟩𝐻 ∶= 𝐱∗𝐻𝐲, |𝐱|2𝐻 ∶= ⟨𝐱,𝐻𝐱⟩, 𝐻 > 0.

Let 𝐴 ∈ 𝑀𝑁(ℂ) be an 𝑁 ×𝑁 matrix with possibly complex-valued entries. The 𝐻-weighted
numerical range,𝑊𝐻(𝐴), is the set in the complex plane

𝑊𝐻(𝐴) ∶=
{⟨𝐴𝐱, 𝐱⟩𝐻 ∶ 𝐱 ∈ ℂ𝑁, |𝐱|𝐻 = 1

}
.

In the case of the standard Euclidean framework corresponding to 𝐻 = 𝕀, we drop the subscript
ℍ = 𝕀 and remain with the usual | ⋅ |2

𝓁2
= ⟨⋅, ⋅⟩, and the corresponding numerical range denoted

8We let | ⋅ | denote the weighted norm, |𝐰|2 = ⟨𝐰,𝐰⟩, and ‖ ⋅ ‖ denote the corresponding induced matrix norm,‖‖ ∶= max𝐰≠0 |𝐰|∕|𝐰| .
9 also called monotonicity in the literature on Runge–Kutta methods.
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𝑊(𝐴). If 𝐴 is real symmetric then𝑊(𝐴) is an interval on the real line (and conversely—if𝑊(𝐴)

is a real interval then 𝐴 is symmetric [29, Problem 3.9]); if 𝐴 is skew-symmetric then𝑊(𝐴) is an
interval on the imaginary line. For general𝐴’s, the Hausdorff–Toeplitz theorem asserts that𝑊(𝐴)

is a convex set in ℂ. As an example, we compute the numerical range of the 𝑁 ×𝑁 translation
matrix, 𝐽0,

𝕁0 ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 … … 0

0 0 1 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋮

0 … ⋱ 0 1

0 … … … 0

⎤⎥⎥⎥⎥⎥⎥⎦
𝑁×𝑁

. (3.1)

For any unit vector 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑁)
⊤ we set a new unit vector 𝑥𝑗(𝜉) ∶= 𝑒𝑖𝑗𝜉𝑥𝑗 to find

⟨𝕁0𝐱(𝜉), 𝐱(𝜉)⟩ = 𝑁−1∑
𝑗=1

𝑥𝑗+1(𝜉)𝑥𝑗(𝜉) = 𝑒𝑖𝜉⟨𝕁0𝐱, 𝐱⟩, 𝑥𝑗(𝜉) ∶= 𝑒𝑖𝑗𝜉𝑥𝑗,

which proves that 𝑊(𝕁0) is a disc centered at the origin, 𝐵𝜌(0); its radius, 𝜌 = 𝜌𝑁 , is found by
considering the eigenvalues 𝜆𝑘(𝑅𝑒 𝕁0) = cos(

𝑘𝜋

𝑁+1
), 𝑘 = 1, 2, … ,𝑁: since for any 𝐴, 𝑅𝑒 𝑊(𝐴) =

𝑊(𝑅𝑒 𝐴), we find 𝜌𝑁 = 𝜆1(𝑅𝑒 𝕁0) = cos(
𝜋

𝑁+1
), and we conclude that𝑊(𝕁) is the disc 𝐵𝜌𝑁 (0),

𝑊(𝕁0) = {𝑧 ∶ |𝑧| ⩽ 𝜌𝑁}, 𝜌𝑁 = cos
( 𝜋

𝑁 + 1

)
. (3.2)

3.2 The numerical radius

The numerical radius of 𝐴 ∈ 𝑀𝑁(ℂ) is given by

𝑟𝐻(𝐴) ∶= max|𝐱|𝐻=1 |⟨𝐴𝐱, 𝐱⟩𝐻|.
The role of the numerical radius in addressing the question of stability was pioneered in the cele-
bratedwork of Lax andWendroff, [40], inwhich they proved the stability of their 2DLax–Wendroff
(LW) scheme, that is, power-boundedness of a family amplification matrices, ‖𝐺𝑛‖ ⩽ 𝐶𝑜𝑛𝑠𝑡.,
by securing 𝑟(𝐺) ⩽ 1. The original proof, by induction on 𝑁 (!), was later replaced by Halmos
inequality, [24, 47]

𝑟(𝐺𝑛) ⩽ 𝑟𝑛(𝐺). (3.3)

Note that although the numerical radius is not sub-multiplicative, that is — although 𝑟(𝐴𝐵) ⩽
𝑟(𝐴)𝑟(𝐵)may fail for general𝐴, 𝐵 ∈ 𝑀𝑁(ℝ) [15], Halmos’ inequality states that it holds whenever
𝐴 = 𝐵.
Since for all 𝐴’s there holds ‖𝐴‖ ⩽ 2𝑟(𝐴), (3.3) immediately yields the stability asserted by Lax

and Wendroff

𝑟(𝐺) ⩽ 1 ⇝ ‖𝐺𝑛‖ ⩽ 2𝑟(𝐺𝑛) ⩽ 2, (3.4)
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and more important for our purpose—power-boundedness is secured uniformly in 𝑁. It is
straightforward to extend these arguments to the weighted framework [62, §3]

𝑟ℍ(𝐺
𝑛) ⩽ 𝑟𝑛

ℍ
(𝐺), and therefore 𝑟ℍ(𝐺) ⩽ 1 ⇝ ‖𝐺𝑛‖ ⩽ 2𝐾ℍ, 0 < 𝐾−1

ℍ
⩽ ℍ ⩽ 𝐾ℍ. (3.5)

Remark 3.1. H.-O. Kreiss proved the LW stability (3.4) by linking it to a (strict) resolvent condition

𝑟(𝐴) ⩽ 1 ⇝ ‖(𝑧𝕀 − 𝐴)−1‖ ⩽ 1|𝑧| − 1
, ∀|𝑧| > 1

and conversely, the numerical range is the smallest set 𝑆 = 𝑊(𝐴), which induces the strict
resolvent condition [56],

‖(𝑧𝕀 − 𝐴)−1‖ ⩽ 1

dist(𝑧, 𝑆)
, ∀𝑧 ∈ 𝑆𝑐.

3.3 Coercivity and RK stability

We turn to verify the stability of the 1-stage forward Euler scheme (RK1),

𝐮𝑛+1 = (𝕀 + Δ𝑡𝕃𝑁)𝐮𝑛.

There are two regions of interest in the complex plane that we need to consider: the weighted
numerical range, 𝑊ℍ𝑁(𝕃𝑁), and the region of absolute stability associated with forward Euler,
𝒜1 = {𝑧 ∶ |1 + 𝑧| ⩽ 1}. We make the assumption that the time step Δ𝑡 is small enough so that

Δ𝑡𝑊ℍ𝑁(𝕃𝑁) ⊂ 𝒜1, 𝒜1 = {𝑧 ∶ |1 + 𝑧| ⩽ 1}, (3.6)

then

𝑟ℍ𝑁(1(Δ𝑡𝕃𝑁)) = max|𝐱|ℍ𝑁=1 |1 + ⟨Δ𝑡𝕃𝑁𝐱, 𝐱⟩ℍ𝑁 |
= max

𝑧∈Δ𝑡𝑊ℍ𝑁
(𝕃𝑁)

|1 + 𝑧| ⩽ max
𝑧∈𝒜1

|1(𝑧)| = 1.
(3.7)

We summarize by stating the following.

Theorem 3.2 (Numerical range stability of RK1). Consider the forward Euler scheme associated
with 1-stage forward Euler method (RK1),

𝐮𝑛+1 = (𝕀 + Δ𝑡𝕃𝑁)𝐮𝑛, 𝑛 = 0, 1, 2, … ,

and assume the CFL condition (3.6) holds. Then the scheme is stable, and the following stability
bound holds

|𝐮𝑛|𝓁2 ⩽ 2𝐾ℍ|𝐮0|𝓁2 , ∀𝑛 ⩾ 1.
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Example 3.1. As an example for theorem 3.2 we consider the one-sided differences (2.7),

Δ𝑡 ⋅𝑎𝔻+
𝑁 = 𝑎

Δ𝑡

Δ𝑥

⎡⎢⎢⎢⎢⎢⎢⎣

−1 1 … … 0

0 −1 1 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋮

0 … ⋱ −1 1

0 … … … −1

⎤⎥⎥⎥⎥⎥⎥⎦
= 𝑎𝛿

(
− 𝕀 + 𝕁0

)
,

𝑎 > 0, 𝛿 =
Δ𝑡

Δ𝑥
.

(3.8)

By translation and dilation,𝑊(Δ𝑡 ⋅𝑎𝔻+
𝑁) = 𝑎𝛿

(
− 1 ⊕𝑊(𝕁0)

)
, where (3.2) tells us that𝑊(𝕁0) is

the ball 𝐵𝜌𝑁(0). Hence𝑊(Δ𝑡 ⋅𝑎𝔻+
𝑁) is given by the shifted ball,

𝑊(Δ𝑡 ⋅𝑎𝔻+
𝑁) =

{
𝑧 ∶ |𝑧 + 𝑎𝛿| ⩽ 𝑎𝛿𝜌𝑁

}
, 𝛿 =

Δ𝑡

Δ𝑥
, 𝜌𝑁 = cos

( 𝜋

𝑁 + 1

)
. (3.9)

In particular,𝑊(Δ𝑡 ⋅𝑎𝔻+
𝑁) ⊂ 𝐵1(−1) uniformly in𝑁 if and only if the CFL condition 𝑎𝛿 ⩽ 1holds,

which in turn secures the stability of the 1-stage forward Euler method, (RK1), for one-sided the
transport equation(2.7), 𝐮𝑛+1 = (𝕀 + Δ𝑡 ⋅𝑎𝔻+

𝑁)𝐮𝑛.

Corollary 3.3 (Stability of forward Euler scheme). Consider the forward Euler scheme (2.9)
associated with 1-stage RK method (RK1),

𝐮𝑛+1 = 1(Δ𝑡 ⋅𝑎𝔻+
𝑁)𝐮𝑛, 𝑛 = 0, 1, 2, … .

The scheme is stable under the CFL condition, 0 < 𝑎𝛿 ⩽ 1, and the following stability bound holds|𝐮𝑛|𝓁2 ⩽ 2|𝐮0|𝓁2 , ∀𝑛 ⩾ 1.

The last corollary can be recast in terms of a stability statement for 𝕁𝑞 = 1(Δ𝑡 ⋅𝑎𝔻+
𝑁),

‖𝕁𝑛𝑞‖ ⩽ 2, 𝑞 ∈ (−1, 0).

This complements the statement of instability of 𝕁𝑞 in the range 𝑞 ∈ (0, 1], discussed in §2.1.1.
We note that the stability of 𝕁𝑞, 𝑞 ∈ [−1, 0) can be independently verified by its induced 𝓁1-

norm,

‖𝕁𝑞‖𝓁1 = | − 𝑞| + |1 + 𝑞| = 1 ⇝ ‖𝕁𝑛𝑞‖𝓁1 ⩽ 1, 𝑞 ∈ [−1, 0). (3.10)

However, the 𝓁2-stability ‖𝕁𝑞‖𝓁2 ⩽ 2 stated in corollary 3.3 and the 𝓁1-stability (3.10) are not
equivalent uniformly in 𝑁. Also, 𝕁𝑞 is subject to 𝓁2 von-Neumann stability analysis [51, §4.7]

max
𝜑

||−𝑞 + (1 + 𝑞)𝑒𝑖𝜑|| = 1, 𝑞 ∈ [−1, 0).

However, since the underlying problem (2.9) is not periodic, von Neumann stability analysis may
not suffice: it requires the normal mode analysis [32] to prove 𝓁2-stability. Thus, the numerical
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range argument summarized in corollary 3.3 offers a genuinely different approach of addressing
the question of stability, at least for 1-stage RK1.

Remark 3.4 (Coercivity). The CFL restriction encoded in (3.6), |⟨Δ𝑡𝕃𝑁𝐱, 𝐱⟩ℍ𝑁 + 1| ⩽ 1, leads to
the sub-class of negative 𝕃𝑁 ’s which satisfy the coercivity bound

2Re ⟨𝕃𝑁𝐱, 𝐱⟩ℍ𝑁 ⩽ −𝛽|⟨𝕃𝑁𝐱, 𝐱⟩ℍ𝑁 |2, ∀𝐱 ∈ {ℂ𝑁 ∶ |𝐱|ℍ𝑁 = 1}. (3.11)

Indeed, if 𝕃𝑁 is 𝛽-coercive in the sense that (3.11) holds with 𝛽 > 0, then (3.6) is satisfied under
the CFL condition Δ𝑡 ⩽ 𝛽, and stability follows, 𝑟ℍ𝑁(𝕀 + Δ𝑡𝕃𝑁) ⩽ 1. We note that (3.11) places a
weaker coercivity condition than the stronger notion of coercivity introduced in [43]

𝕃⊤𝑁ℍ𝑁 + ℍ𝑁𝕃𝑁 ⩽ −𝛽𝕃⊤𝑁ℍ𝑁𝕃𝑁, 𝛽 > 0. (3.12)

Indeed, the latter implies (3.11), for

2Re⟨𝕃𝑁𝐱, 𝐱⟩ℍ𝑁 ⩽ −𝛽⟨𝕃⊤𝑁ℍ𝑁𝕃𝑁𝐱, 𝐱⟩ = −𝛽|𝕃𝑁𝐱|2ℍ𝑁 ⩽ −𝛽|⟨𝕃𝑁𝐱, 𝐱⟩ℍ𝑁 |2, |𝐱|ℍ𝑁 = 1.

One can then revisit the coercivity-based examples for stable RKmethods in [43] using the relaxed
coercivity (3.11). The notion of 𝛽-coercivity is related to the dissipative resolvent condition (2.11)
but we shall not dwell on this point in this work.

3.4 Numerical range stability of SSP RK𝒔

We extend theorem 3.2 tomulti-stage RKmethods using their SSP format [18, §3].We demonstrate
the first three cases of RK𝑠, 𝑠 = 2, 3, 4.
Assume that the numerical range stability (3.7) holds. For example, the CFL condition Δ𝑡 ⩽ 𝛽

for 𝛽-coercive 𝕃𝑁 ’s, (3.11), implies 𝑟ℍ𝑁(𝕀 + Δ𝑡𝕃𝑁) ⩽ 1. Then, for the 2-stage RKmethod, (RK2), we
have by Halmos inequality (3.3)

𝑟ℍ𝑁
(2(Δ𝑡𝕃𝑁)) ⩽ 1∕2 + 1∕2 𝑟2

ℍ𝑁
(𝕀 + Δ𝑡𝕃𝑁) ⩽ 1∕2 + 1∕2 = 1,

2(Δ𝑡𝕃𝑁) ≡ 1∕2 𝕀 + 1∕2 (𝕀 + Δ𝑡𝕃𝑁)
2.

Similarly, the 3-stage RK method (RK3) can be expressed as

3(Δ𝑡𝕃𝑁) ≡ 1∕3 𝕀 + 1∕2 (𝕀 + Δ𝑡𝕃𝑁) + 1∕6 (𝕀 + Δ𝑡𝕃𝑁)
3,

and hence if (3.7) holds, then the stability of (RK3) follows from Halmos inequality,

𝑟ℍ𝑁
(3(Δ𝑡𝕃𝑁)) ⩽ 1∕3 + 1∕2 𝑟ℍ𝑁(𝕀 + Δ𝑡𝕃𝑁) + 1∕6 𝑟3

ℍ𝑁
(𝕀 + Δ𝑡𝕃𝑁)

⩽ 1∕3 + 1∕2 + 1∕6 = 1.
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A similar argument applies to the 4-stage RK (RK4),

4(Δ𝑡𝕃𝑁) ≡ 3∕8 𝕀 + 1∕3 (𝕀 + Δ𝑡𝕃𝑁) + 1∕4 (𝕀 + Δ𝑡𝕃𝑁)
2 + 1∕24 (𝕀 + Δ𝑡𝕃𝑁)

4;

the numerical stability (3.7), 𝑟ℍ𝑁(𝕀 + Δ𝑡𝕃𝑁) ⩽ 1 implies the stability of RK4,

𝑟ℍ𝑁 (4(Δ𝑡𝕃𝑁)) ⩽ 3∕8 + 1∕3𝑟ℍ𝑁 (𝕀 + Δ𝑡𝕃𝑁) + 1∕4𝑟2
ℍ𝑁
(𝕀 + Δ𝑡𝕃𝑁)

2
+ 1∕24𝑟4

ℍ𝑁
(𝕀 + Δ𝑡𝕃𝑁)

⩽ 3∕8 + 1∕3 + 1∕4 + 1∕24 = 1.

We summarize by stating

Corollary 3.5 (Coercivity implies stability of RK𝑠, 𝑠 = 2, 3, 4). Consider the RK schemes

𝐮𝑛+1 = 𝑠(Δ𝑡𝕃𝑁)𝐮𝑛, 𝑛 = 0, 1, 2, … , 𝑠 = 2, 3, 4.

Assume the numerical range stability (3.7) holds. In particular if𝕃𝑁 is 𝛽-coercive in the sense of (3.11),
and that the CFL condition, Δ𝑡 ⩽ 𝛽, is satisfied. Then these 𝑠-stage RK schemes are stable,

|𝐮(𝑡𝑛)|ℍ𝑁 ⩽ 2|𝐮(0)|ℍ𝑁 ⇝ |𝐮(𝑡𝑛)|𝓁2 ⩽ 2𝐾ℍ|𝐮(0)|𝓁2 .
The building block of corollary 3.5 is the condition of numerical range stability (3.7) originated

with (RK1). While this argument is sharp for the 1-stage forward Euler, this SSP-based argument
is too restrictive for multi-stage RK𝑠. In particular, corollary 3.5 rules out the large sub-class of
negative yet non-coercive 𝕃𝑁 ’s, due to a numerical range which has non-trivial intersection with
the imaginary axes. In particular, this includes the important sub-class of skew-symmetric (hyper-
bolic) 𝕃𝑁 ’s with purely imaginary numerical range. For example, if the one-sided differences in
(2.7) are replaced by centered-differences

𝐮𝑛+1 = (𝕀 + Δ𝑡 ⋅𝑎𝔻0
𝑁)𝐮𝑛, 𝔻0

𝑁 ∶=
1

Δ𝑥

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 … … 0

−1 0 1 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋮

0 … −1 0 1

0 … … −1 0

⎤⎥⎥⎥⎥⎥⎥⎦
𝑁×𝑁

. (3.13)

The numerical range lies on the imaginary interval, 𝑊(Δ𝑡 ⋅𝑎𝔻0
𝑁) = [−𝑖𝑅, 𝑖𝑅] with 𝑅 = 𝑅𝑁 =

𝑎𝛿 cos(
𝜋

𝑁+1
). The 1-stage forward Euler (3.13) fails to satisfy the imaginary interval condition,

and therefore, corollary 3.5 fails to capture the stability of the corresponding RK𝑠, 𝐮𝑛+1 = 𝑠(Δ𝑡 ⋅
𝑎𝔻0

𝑁)𝐮𝑛 for 𝑠 = 3, 4.

4 SPECTRAL SETS AND STABILITY OF RUNGE–KUTTAMETHODS

We now turn our attention to the stability of multi-stage RKmethods, 𝑠(Δ𝑡𝕃𝑁). Clearly, spectral
analysis is not enough. On the other hand, direct computation based on 𝓁1 or 𝓁2-von Neumann
analysis is not accessible: even the entries in the example of one-sided differences, 𝑠(Δ𝑡 ⋅𝑎𝔻+

𝑁),
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for 𝑠 = 3, 4, become excessively complicated to write down. Instead, we suggest to pursue a
stability argument based on numerical radius along the lines of (3.7), starting with

𝑟(𝑠(Δ𝑡𝕃𝑁)) = max|𝐱|=1
𝐱∈ℂ𝑁

|| 𝑠∑
𝑘=0

𝑎𝑘⟨(Δ𝑡𝕃𝑁)𝑘𝐱, 𝐱⟩||.
This requires a proper functional calculus of numerical range, relating the sets𝑊(𝑠(Δ𝑡𝕃𝑁)) and
{|𝑠(𝑧)| , ∶ 𝑧 ∈ 𝑊(Δ𝑡𝕃𝑁)}, similar to the role of the spectral mapping theorem (1.9) as the center-
piece of spectral stability analysis. To this end we recall the notion of a 𝐾-spectral set developed in
[8, 10], which dates back to von Neumann [46]; we refer to [54] for a most recent overview.

Definition 4.1 (𝐾-spectral sets). Given 𝐴 ∈ 𝑀𝑁(ℂ), we say that Ω ⊂ ℂ is a 𝐾-spectral set of 𝐴 if
there exists a finite 𝐾 > 0 such that for all analytic 𝑓’s bounded on Ω, there holds

‖𝑓(𝐴)‖𝐻 ⩽ 𝐾max
𝑧∈Ω

|𝑓(𝑧)|. (4.1)

In a remarkable work [6], Crouzeix proved that for everymatrix𝐴, the numerical range𝑊𝐻(𝐴)

is a𝐾-spectral set of𝐴with𝐾 ⩽ 11.08; thiswas later improved to𝐾 = 1 +
√
2 [7]. An elegant proof

of Crouzeix and Palencia (1 +
√
2)-bound [50] is included in an appendix. It follows, in particular,

that for all polynomials 𝑝,

‖𝑝(𝐴)‖𝐻 ⩽ (1 +
√
2) max

𝑧∈𝑊𝐻(𝐴)
|𝑝(𝑧)|. (4.2)

Theorem4.2 (Stability of Runge–Kutta schemes).Consider the 𝑠-stage explicit RKmethod𝑠(𝑧) =∑𝑠

𝑘=0 𝑎𝑘𝑧
𝑘 , associated with region of absolute stability𝒜𝑠 = {𝑧 ∶ |𝑠(𝑧)| ⩽ 1}. Then, the RK scheme

𝐮𝑛+1 = 𝑠(Δ𝑡𝕃𝑁)𝐮𝑛, 𝑛 = 0, 1, 2, … .

is stable under the CFL condition Δ𝑡𝑊ℍ𝑁(𝕃𝑁) ⊂ 𝒜𝑠,

Δ𝑡𝑊ℍ𝑁(𝕃𝑁) ⊂ 𝒜𝑠 ⇝ |𝐮𝑛|𝓁2 ⩽ (1 +
√
2)𝐾ℍ|𝐮0|𝓁2 , 𝑛 = 1, 2, … . (4.3)

For proof we apply (4.2) with 𝑝 = 𝑛
𝑠 :

‖𝑛
𝑠 (Δ𝑡𝕃𝑁)‖ℍ𝑁 ⩽ (1 +

√
2) max

𝑧∈Δ𝑡𝑊ℍ𝑁
(𝕃𝑁)

|𝑛
𝑠 (𝑧)|

⩽ (1 +
√
2)max

𝑧∈𝒜𝑠

|𝑛
𝑠 (𝑧)| ⩽ 1 +

√
2,

and hence ‖𝑛
𝑠 (Δ𝑡𝕃𝑁)‖ ⩽ (1 +

√
2)𝐾ℍ.

Remark 4.3 (Implicit RK methods). The argument above makes a critical use of the striking
fact that the spectral set bound, 𝐾 = 1 +

√
2, is independent of neither the increasing degree,

deg(𝑛
𝑠 ) = 𝑠𝑛, nor of the increasingly large dimension, dim(𝕃𝑁) = 𝑁. In fact, since (4.2) applies
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to the larger algebra of rational functions bounded on 𝑊𝐻(𝐴), theorem 4.2 can be equally well
formulated to general implicit RK methods [23, II.7].

We recall the spectral stability analysis (1.10)which is quantified in terms of the spectrum𝜎(𝕃𝑁)

Δ𝑡 𝜎(𝕃𝑁) ⊂ 𝒜𝑠, 𝜎(𝐴) ∶= {𝜆𝑘(𝐴) ∶ 𝑘 = 1, 2, … ,𝑁}.

In the terminology of (4.1), the spectrum𝜎(𝕃𝑁) is not a spectral set for𝕃𝑁 . Theorem4.2 tells us that
replacing the spectrum with the larger set of 𝐻-weighted numerical range, 𝑊ℍ𝑁(𝕃𝑁) ⊃ 𝜎(𝕃𝑁),
provides a very general framework for the stability of any Runge–Kutta scheme, in conjunction
with any 𝕃𝑁 . For example, the forward Euler (RK1) applies to the one-sided difference (3.8) which
was covered in Corollary 3.3. Observe that for normalmatrices,10 𝕃𝑁 , there holds conv{𝜎(𝕃𝑁)} =
𝑊(𝕃𝑁), for example [25]. Thus, the gap 𝑊ℍ𝑁(𝕃𝑁)∖conv{𝜎(𝕃𝑁)} comes into play in the stability
statement (4.3) when normality uniform-in-𝑁 fails — precisely the scenario described in §2.1 for
failure of spectral analysis to secure stability (in this context we remark that since∩𝐻>0𝑊𝐻(𝕃𝑁) =

conv{𝜎(𝕃𝑁)}, it is essential to restrict attention to uniformly bounded symmetrizers ℍ𝑁 in (1.4)).
Amain drawback of the CFL condition (4.3) is its formulation in terms of a weighted numerical

range which is not always easily accessible. Here comes the imaginary interval condition, (1.13),
which provides an accessible sufficient condition for stability of multi-stage RK methods.

Theorem 4.4 (Stability of Runge–Kutta methods). Consider the 𝑠-stage explicit RK method and
assume it satisfies the imaginary interval condition (1.13), namely—there exists 𝑅𝑠 > 0 such that

max
−𝑅𝑠⩽𝜎⩽𝑅𝑠

|𝑠(𝑖𝜎)| ⩽ 1, 𝑠(𝑧) = 1 + 𝑧 + 𝑎2𝑧
2 +⋯+ 𝑎𝑠𝑧

𝑠. (4.4)

Then, there exists a constant 0 < 𝑠 < 𝑅𝑠 such that for all negative 𝕃𝑁 ’s (1.4), the RK method

𝐮𝑛+1 = 𝑠(Δ𝑡𝕃𝑁)𝐮𝑛, 𝑛 = 0, 1, 2, … ,

is stable under the CFL condition Δ𝑡 ⋅ 𝑟ℍ𝑁(𝕃𝑁) ⩽ 𝑠,

Δ𝑡 ⋅ 𝑟ℍ𝑁(𝕃𝑁) ⩽ 𝑠 ⇝ |𝐮𝑛|𝓁2 ⩽ (1 +
√
2)𝐾ℍ|𝐮0|𝓁2 , 𝑛 = 1, 2, … . (4.5)

Proof. Recall 𝐵−𝛼 denotes the semi-disc, 𝐵−𝛼 ∶= {𝑧 ∶ Re 𝑧 ⩽ 0, |𝑧| ⩽ 𝛼}. Consider an arbitrary
negative 𝕃𝑁 ,

2Re ⟨𝕃𝑁𝐱, 𝐱⟩ℍ𝑁 = ⟨(𝕃⊤𝑁ℍ𝑁 + ℍ𝑁𝕃𝑁)𝐱, 𝐱⟩ ⩽ 0

The negativity of 𝕃𝑁 states that the weighted numerical range 𝑊ℍ𝑁(𝕃𝑁) lies on the left side of
complex plane, and in fact, inside the left semi-disc

𝑊ℍ𝑁(𝕃𝑁) ⊂ 𝐵−
𝑟ℍ𝑁(𝕃𝑁)

∶= {𝑧 ∶ Re 𝑧 ⩽ 0, |𝑧| ⩽ 𝑟ℍ𝑁(𝕃𝑁)}.

10 𝕃∗𝑁𝕃𝑁 = 𝕃𝑁𝕃
∗
𝑁 where 𝕃∗𝑁 is the 𝓁2-adjoint of 𝕃𝑁 .
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Next, we make use of [35, Theorem 3.2] which asserts11 that for an 𝑠-stage RK method satisfying
the imaginary interval condition, its region of absolute stability contains a non-trivial semi-disc
𝐵−𝑠 with 𝑠 ⩽ 𝑅𝑠, so that

𝒜𝑠 ⊃ 𝐵−𝑠 ∶= {𝑧 ∶ Re 𝑧 ⩽ 0, |𝑧| ⩽ 𝑠}, 𝑠 ⩽ 𝑅𝑠. (4.6)

We conclude that for small step-size (4.5)

Δ𝑡𝑊ℍ𝑁(𝕃𝑁) ⊂ Δ𝑡 𝐵−
𝑟ℍ𝑁(𝕃𝑁)

= 𝐵−
Δ𝑡⋅𝑟ℍ𝑁(𝕃𝑁)

⊂ 𝐵−𝑠 ⊂ 𝒜𝑠.

Theorem 4.2 implies stability (1.6) with 𝐾𝕃 = (1 +
√
2)𝐾ℍ. □

Remark 4.5. We note that theorem 4.4 makes use of the semi-disc 𝐵−𝑠 as a spectral set
for 𝑠(Δ𝑡𝕃𝑁). In this case, one expects a sharper bound, compared with (4.2) [54, §3.2],‖𝑝(𝐴)‖𝐻 ⩽ 2max𝑧∈𝑊𝐻(𝐴) |𝑝(𝑧)|. The constant 2—corresponding to (3.4) with 𝑝(𝑧) = 𝑧𝑛, agrees
with Crouzeix’s conjecture [6] regarding the optimality of the numerical range as 2-spectral set.

4.1 Optimality of the numerical radius-based CFL condition

We observe that the CFL condition quoted in (4.5),

Δ𝑡 ⋅ 𝑟ℍ𝑁(𝕃𝑁) ⩽ 𝑠, (4.7)

offers a refinement of the CFL condition (1.7). Indeed, sinceℍ𝑁 is uniformly bounded 0 < 𝐾−1
ℍ

⩽

ℍ𝑁 ⩽ 𝐾ℍ, we have

𝑟ℍ𝑁(𝕃𝑁) ⩽ ‖𝕃𝑁‖ℍ𝑁 ⩽ 𝐾ℍ‖𝕃𝑁‖,
and hence, the CFL condition—compare with (1.7), Δ𝑡 ⋅ ‖𝕃𝑁‖ ⩽ ′𝑠 with ′𝑠 ∶= 𝑠∕𝐾ℍ, implies
that (4.5) holds, and stability follows.
In fact, we claim that (4.7) offers an optimal CFL condition in the following sense. The proof

of theorem 4.4 compares two semi-discs: on one hand we identified 𝐵−𝑠 as the largest semi-disc
inscribed inside𝒜𝑠 (this is a property of the RKmethod under consideration); on the other hand,
we identified 𝐵−

𝑟ℍ𝑁(𝕃𝑁)
as the smallest semi-disc which contains 𝑊ℍ𝑁(𝕃𝑁). The CFL condition

(4.7) secures the dilation of the latter semi-disc inside the former, and there, we seek the small-
est semi-disc associated with 𝕃𝑁 which satisfies a set of desired requirements. We claim that we
cannot find a smaller semi-disc which will secure this line of argument. Indeed, let [[⋅]] denote
an arbitrary (vector) norm on 𝑀𝑁(ℂ), with a semi-disc 𝐵−[[𝕃𝑁]] which would be a candidate for a
better CFL condition, that is, an even smaller semi-disc 𝐵−

[[𝕃𝑁]]
⊂ 𝐵−

𝑟ℍ𝑁(𝕃𝑁)
. Clearly, by the neces-

sity encoded in (1.10), the CFL condition requires that [[𝐴]] is spectrally dominant in the sense
that [[𝐴]] ⩾ |𝜆max(𝐴)| for all 𝐴 ∈ 𝑀𝑁(ℂ). Moreover, since power-boundedness is invariant under
unitary transformations, ‖(𝑈𝐴𝑈∗)𝑛‖ℍ𝑁 = ‖𝐴𝑛‖ℍ𝑁 , we ask that the semi-disc associated with [[⋅]]
11 Note that this requires 𝑠(0) =  ′

𝑠 (0) = 1 in (4.4).
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F IGURE 2 The semi-circles 𝐵−𝑠 (0) inscribed inside𝒜3 (left) and𝒜4 (right),

be unitarily invariant,

𝑈𝐵−
[[𝕃𝑁]]

𝑈∗ = 𝐵−
[[𝕃𝑁]]

for all 𝑈′s such that |𝑈𝐱|ℍ𝑁 = |𝐱|ℍ𝑁 .
It follows from the main theorem of [14] that the semi-disc 𝐵−

[[𝕃𝑁]]
must contain 𝐵−

𝑟ℍ𝑁(𝕃𝑁)
. That is,

the corresponding CFL condition (4.7) is optimal in the sense that it is the smallest, spectrally
dominant, unitarily invariant semi-disc which makes the argument of theorem 4.4 work.
A main aspect of theorem 4.4 is going beyond any specific coercivity requirement which was

sought in the SSP-based arguments in §3.4. It applies to all negative 𝕃𝑁 ’s, thus addressing the
question sought in [43, §3.5]. A precise characterization for RK methods satisfying the imaginary
interval conditionwas given in [35, Theorem3.1]. Consider an explicit 𝑠 stageRKmethod, accurate
of order 𝑟 ⩾ 1,

𝑠(𝑧) =
𝑟∑

𝑘=0

𝑧𝑘

𝑘!
+

𝑠∑
𝑘=𝑟+1

𝑎𝑘𝑧
𝑘, 𝑟 ⩾ 1. (4.8a)

It satisfies the imaginary interval condition (1.13) if and only if

⎧⎪⎨⎪⎩
(−1)

𝑟+1

2 (𝑎𝑟+1 − 1) < 0, 𝑟 is odd,

(−1)
𝑟+2

2 (𝑎𝑟+2 − (𝑟 + 2)𝑎𝑟+1 + 𝑟 + 1) < 0, 𝑟 is even.
(4.8b)

In the particular case of 𝑠 = 𝑟 = 3, 4 we find that the 3-stage RK method (RK3) and 4-stage RK
method RK4 satisfy the imaginary interval condition and hence the existence of semi-discs with
radii 3 =

√
3 and 4 = 2.61, shown in Figure 2 which imply stability under the respective CFL

conditions,

Δ𝑡 ⋅ ‖𝕃𝑁‖ ⩽ ′𝑠 , ′𝑠 = 𝑠∕𝐾ℍ.
In particular, this extends the strong stability statement of 3-stage (RK3) in [65, Theorem 2] and
provides a stability proof for the 4-stage RK (RK4) for arbitrarily large systems with negative 𝕃𝑁 ’s.
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Comparing the RK4 stability requirement, 4 = 2.61, vs. the RK4 interval condition mentioned
earlier, 𝑅4 = 2

√
2, reflects the stricter stability requirement associated with the larger numerical

range𝑊ℍ𝑁(𝕃𝑁) ⊃ 𝜎(𝕃𝑁).
Condition (4.8b) becomes more restrictive for higher order methods; instead, one can increase

𝑟 and use 𝑠-stage protocol, 𝑠 > 𝑟 to form a dissipative term
∑𝑠

𝑘=𝑟+1
𝑎𝑘𝑧

𝑘 which enforces the imag-
inary interval condition. In particular, the 7-stage Dormand-Prince method [11], with embedded
fourth- and fifth-order accurate RK45, (𝑟, 𝑠) = (5, 7) which is used in MATLAB, does satisfy the
imaginary interval condition (4.8b) [55]. See the example of the 10-stage explicit RK method
SSPRK(10,4) in [49, Fig. 2].

5 EXAMPLES: STABILITY OF TIME-DEPENDENTMETHODS OF
LINES

We demonstrate application of the new stability results for arbitrarily large systems in the context
of methods of lines for difference approximation of the scalar hyperbolic equation

𝑦𝑡 = 𝑎(𝑥)𝑦𝑥, (𝑡, 𝑥) ∈ ℝ+ × [0, 1],

augmented with proper boundary conditions. The stability results extend, mutatis mutandis,12

to multi-dimensional hyperbolic problems, 𝐲𝑡 =
∑𝑑

𝑗=1
𝐴𝑗(𝑥)𝐲𝑥𝑗 . Stability theories for such differ-

ence approximations were developed in the classical works in the 50s–70s, for example [20, 31, 32,
37, 38, 40, 51] and can be found in the more recent texts of [21, 26, 41]. Our aim here is to revisit
the question of stability for RK time-discretizations of such difference approximations, from a
perspective of the stability theory developed in §4. A central part of this approach requires com-
putation of the (weighted) numerical range of the large matrices that arise in the context of such
difference approximations. The development of full stability theory along these lines is beyond
the scope of this paper, and is left for future work.

5.1 Periodic problems. Constant coefficients

We consider the 1-periodic problem{
𝑦𝑡(𝑥, 𝑡) = 𝑎𝑦𝑥(𝑥, 𝑡), (𝑡, 𝑥) ∈ ℝ+ × [0, 1]

𝑦(0, 𝑡) = 𝑦(1, 𝑡).

Its spatial part is discretized using finite-difference method with constant coefficients (depending
on 𝑎), {𝑞𝛼}, and acting on a discrete grid, 𝑥𝜈 = 𝜈Δ𝑥, Δ𝑥 = 1∕𝑁,

𝑑

𝑑𝑡
𝑦(𝑥𝜈, 𝑡) = 𝑄(𝐸)𝑦(𝑥𝜈, 𝑡), 𝜈 = 0, 1, … ,𝑁 − 1, 𝑄(𝐸) ∶=

1

Δ𝑥

𝑟∑
𝛼=−𝓁

𝑞𝛼𝐸
𝛼.

12 In particular, 𝓁2-stability needs to be adjusted to weighted𝐻-stability, weighted by the smooth symmetrizer𝐻 = 𝐻(𝑥, 𝜉)

so that𝐻(𝑥, 𝜉)
∑
𝑗
𝐴𝑗(𝑥)𝑒

𝑖𝑗𝜉 is symmetric.
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Here 𝐸 is the 1-periodic translation operator, 𝐸𝑦𝜈 = 𝑦(𝜈+1)[𝑚𝑜𝑑𝑁]. The resulting scheme amounts
to a systemofODEs for the𝑁-vector of unknowns,𝐲(𝑡) =

(
𝑦(𝑥0, 𝑡), … , 𝑦(𝑥𝑁−1, 𝑡)

)⊤
, which admits

the circulantmatrix representation

𝐲̇(𝑡) = 𝑄(𝔼𝑁)𝐲, 𝑄(𝔼𝑁) =
1

Δ𝑥

𝑟∑
𝛼=−𝓁

𝑞𝛼𝔼
𝛼,

𝔼𝑁 ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 … … 0

0 0 1 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋮

0 … ⋱ 0 1

1 … … 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
𝑁×𝑁

.

(5.1)

The numerical range of circulant matrices is given by convex polytopes. Indeed, let 𝔽 denote the

unitary Fourier matrix, 𝔽𝑗𝑘 =
{

1√
𝑁
𝑒2𝜋𝑖𝑗𝑘∕𝑁

}𝑁

𝑗,𝑘=1
. Then 𝔽 diagonalizes 𝔼𝑁 ,

⟨𝔼𝑁𝐱, 𝐱⟩ = ⟨𝔼𝑁𝐱, 𝐱⟩,

𝔼𝑁 ∶= 𝔽∗𝔼𝑁𝔽 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑒
2𝜋𝑖

𝑁 0 … … 0

0 𝑒
2
2𝜋𝑖

𝑁 0 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋮

0 … ⋱ 𝑒
(𝑁−1)

2𝜋𝑖

𝑁 0

0 … … … 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐱 ∶= 𝔽∗𝐱.

and hence𝑊(𝔼𝑁) =
{∑𝑁

𝑗=1
|𝑥𝑗|2𝑒2𝜋𝑖𝑗∕𝑁 ∶

∑
𝑗
|𝑥𝑗|2 = 1

}
is the regular 𝑁-polytope with vertices

at {𝑒2𝜋𝑖𝑗∕𝑁}𝑁
𝑗=1

. This should be compared with the numerical range of the Jordan block (3.2).
It follows that 𝑄(𝔼𝑁) = 𝑄(𝔼𝑁) and hence the action of the 𝑁 ×𝑁 circulant 𝑄(𝔼𝑁) is encoded

it terms of its symbol, 𝑞(𝜉) ∶= 1

Δ𝑥

∑
𝛼
𝑞𝛼𝑒

𝑖𝛼𝜉 ,

⟨𝑄(𝔼𝑁)𝐱, 𝐱⟩ = ⟨𝑄(𝔼𝑁)𝐱, 𝐱⟩,

𝑄(𝔼𝑁) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑞(
2𝜋

𝑁
) 0 … … 0

0 𝑞(2
2𝜋

𝑁
) 0 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ 𝑞((𝑁−1)
2𝜋

𝑁
) 0

0 … … 0 𝑞(2𝜋)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Lemma 5.1 (Numerical range of circulant matrices). The numerical range of the circulant matrix
𝑄(𝔼𝑁) is given by the convex polytope with vertices at {𝑞(2𝜋𝑗∕𝑁)}𝑁𝑗=1,

𝑊(𝑄(𝔼𝑁)) =

{∑
𝑗

|𝑥̂𝑗|2𝑞̂(2𝜋𝑗𝑁
)
∶ |𝐱̂| = 1

}
.
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We now appeal to theorem 3.2 which secures the stability of forward Euler time discretization
for 𝕃𝑁 = 𝑄(𝔼𝑁), provided the CFL condition Δ𝑡𝑊(𝑄(𝔼𝑁)) ⊂ 𝐵1(−1) holds.

Proposition 5.2 (Stability—difference schemes with constant coefficients. I). Consider the fully-
discrete finite difference scheme

𝐮𝑛+1 = 𝐮𝑛 +
Δ𝑡

Δ𝑥

∑
𝛼

𝑞𝛼𝔼
𝛼
𝑁 𝐮𝑛, 𝑛 = 0, 1, 2, … .

The scheme is stable under the CFL condition,

max
1⩽𝑗⩽𝑁

|||1 + Δ𝑡 ⋅𝑞(2𝜋𝑗∕𝑁)
||| ⩽ 1, 𝑞(𝜉) ∶=

1

Δ𝑥

∑
𝛼

𝑞𝛼𝑒
𝑖𝛼𝜉, (5.2)

and the following stability bound holds |𝐮𝑛|𝓁2 ⩽ 2|𝐮0|𝓁2 , ∀𝑛 ⩾ 1.

Since the CFL condition (5.2) guarantees that 𝕃𝑁 = 𝕀 + Δ𝑡 ⋅𝑄(𝔼𝑁) is coercive, the result goes
over to SSP-based multi-stage RK time differencing. In fact, theorem 4.4 applies for multi-stage
RK time differencing and for all negative 𝑄(𝔼𝑁)’s.

Proposition 5.3 (Stability—difference schemes with constant coefficients. II). Consider the fully-
discrete finite difference scheme

𝐮𝑛+1 =𝑠(Δ𝑡 ⋅𝑄(𝔼𝑁))𝐮𝑛, 𝑛 = 0, 1, 2, … ,

𝑠(𝑧)=
𝑠∑

𝑘=0

𝑎𝑘𝑧
𝑘, 𝑄(𝔼𝑁)=

1

Δ𝑥

∑
𝛼

𝑞𝛼𝔼
𝛼
𝑁.

(5.3)

Here, 𝑠 is an 𝑠-stage RK stencil satisfying the imaginary interval condition, so that (4.6) holds with𝑠 > 0. If the spatial discretization is negative, 𝑅𝑒 𝑞(2𝜋𝑗∕𝑁) ⩽ 0, then the scheme (5.3) is stable under
the CFL condition

max
1⩽𝑗⩽𝑁

|Δ𝑡 ⋅ 𝑞(2𝜋𝑗∕𝑁)| ⩽ 𝑠, 𝑞(𝜉) = 𝑄(𝑒𝑖𝜉), (5.4)

and the following stability bound holds,

|𝐮𝑛|𝓁2 ⩽ (1 +
√
2)|𝐮0|𝓁2 , 𝑛 = 1, 2, … .

Propositions 5.2 and 5.3 recover von-Neumann stability analysis for difference schemes with
constant coefficients [21, §4.2]. We shall consider three examples.

Example 5.1 (One-sided differences). Consider the periodic setup of the one-sided difference
(2.7),

𝐮𝑛+1 =
(
𝕀 + Δ𝑡 ⋅𝑄(𝔼𝑁))

)
𝐮𝑛, 𝑄(𝔼𝑁) =

𝑎

Δ𝑥
(𝔼𝑁 − 𝕀),
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with spatial symbol 𝑞(𝜉) = 𝑎

Δ𝑥
(𝑒𝑖𝜉 − 1). This amounts to the 𝑁 ×𝑁 system

𝐮𝑛+1 = 𝕃𝑁𝐮𝑛,

𝕃𝑁 =

⎡⎢⎢⎢⎢⎢⎢⎣

1−𝛿𝑎 𝛿𝑎 0 … 0

0 1−𝛿𝑎 𝛿𝑎 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ 0

0 ⋱ ⋱ 1−𝛿𝑎 𝛿𝑎

𝛿𝑎 0 … 0 1−𝛿𝑎

⎤⎥⎥⎥⎥⎥⎥⎦
𝑁×𝑁

, 𝛿 =
Δ𝑡

Δ𝑥
.

Using proposition 5.2 we secure stability under the usual CFL condition 𝛿𝑎 ⩽ 1,

𝛿𝑎 ⩽ 1 ⇝ max
1⩽𝑗⩽𝑁

||1 + 𝛿𝑎(𝑒2𝜋𝑖𝑗∕𝑁 − 1)||2 = |1 − 𝛿𝑎|2 + 2|1 − 𝛿𝑎|𝛿𝑎 + (𝛿𝑎)2 ⩽ 1.

This extends to multi-stage time differencing, RKs, 𝑠 = 3, 4

𝐮𝑛+1 = 𝑠(Δ𝑡 ⋅𝑄(𝔼𝑁))𝐮𝑛, 𝑠(𝑧) =
𝑠∑

𝑘=0

𝑧𝑘

𝑘!
, 𝑠 = 3, 4.

Clearly, 𝑅𝑒 𝑞 ⩽ 0, and we can appeal to proposition 5.3 which secures stability under CFL
condition 𝛿𝑎 ⩽ 𝑠; indeed,

𝛿𝑎 ⩽ 𝑠 ⇝ 𝛿𝑎(𝑒2𝜋𝑖𝑗∕𝑁 − 1) ∈ 𝐵−𝑠 , 𝑗 = 1, 2, … ,𝑁.

Example 5.2 (Centered differences). Consider the periodic setup of the centered spatial difference
scheme (3.13), combined with multi-stage RK time differencing, RKs, 𝑠 = 3, 4,

𝐮𝑛+1 = 𝑠(Δ𝑡 ⋅𝑄(𝔼𝑁))𝐮𝑛, 𝑄(𝔼𝑁) =
𝑎

2Δ𝑥
(𝔼𝑁 − 𝔼−1𝑁 ).

Spatial differencing has purely imaginary symbol 𝑞(𝜉) = 𝑎

Δ𝑥
𝑖 sin(𝜉), and we invoke proposition

5.3 which secures stability under the CFL condition (5.4),

𝛿𝑎 = max
1⩽𝑗⩽𝑁

|||𝛿𝑎𝑖 sin(2𝜋𝑖𝑗∕𝑁)||| ⩽ 𝑠, 𝛿 =
Δ𝑡

Δ𝑥
.

This line of argument extends to higher order centered differences [65, §5.2], for example the
fourth-order difference

𝑄(𝔼𝑁) =
𝑎

12Δ𝑥
(−𝔼2𝑁 + 8𝔼𝑁 − 8𝔼−1𝑁 + 𝔼−2𝑁 )

or the fourth-order finite-element difference

𝑄(𝔼𝑁) =

⎡⎢⎢⎢⎢⎢⎢⎣

4∕6 1∕6 0 … 1∕6

1∕6 4∕6 1∕6 ⋱ 0

0 ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ 4∕6 1∕6

1∕6 0 … 1∕6 4∕6

⎤⎥⎥⎥⎥⎥⎥⎦

−1

×
1

2Δ𝑥

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 … … −1

−1 0 1 ⋱ ⋮

0 ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ 0 1

1 0 … −1 0

⎤⎥⎥⎥⎥⎥⎥⎦
𝑁×𝑁

.
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Example 5.3 (LW differencing). We use the LW protocol for second-order spatial difference [40]
(observe that the mesh ratio, 𝛿 = Δ𝑡∕Δ𝑥, is kept fixed),

𝑄LW(𝔼𝑁) =
𝑎

2Δ𝑥
(𝔼𝑁 − 𝔼−1𝑁 ) +

𝛿𝑎2

2Δ𝑥
(𝔼𝑁 − 2𝕀 + 𝔼−1𝑁 ),

with symbol

𝑞LW(𝜉) =
𝑎

Δ𝑥
𝑖 sin(𝜉) +

𝛿𝑎2

Δ𝑥
(cos(𝜉) − 1).

Stability of the LW scheme

𝐮𝑛+1 =
(
𝕀 + Δ𝑡𝑄LW(𝔼𝑁)

)
𝐮𝑛 (5.5)

follows provided CFL condition (5.2) holds, namely, |1 + Δ𝑡𝑞LW(2𝜋𝑗∕𝑁)| ⩽ 1. Noting that

𝑞LW(𝜉) =
2𝑎

Δ𝑥
𝑖 sin(𝜉∕2) cos(𝜉∕2) −

2𝛿𝑎2

Δ𝑥
sin

2
(𝜉∕2),

it is a standard argument, for example [21, §1.2] to conclude that 𝛿𝑎 ⩽ 1 secures the desired CFL
condition,

𝛿𝑎 ⩽ 1 ⇝ max
1⩽𝑗⩽𝑁

|1 + Δ𝑡𝑞LW(2𝜋𝑗∕𝑁)|2 ⩽ 1.

We note that LW differencing has a negative symbol 𝑅𝑒 𝑞LW(𝜉) ⩽ 0, and therefore theorem 4.4
secures the stability of higher-order time discretizations of LW scheme

𝐮𝑛+1 = 𝑠(Δ𝑡𝑄LW(𝔼𝑁))𝐮𝑛, 𝑠 = 3, 4,

under the relaxed CFL condition, 2𝛿𝑎 ⩽ 𝑠. Indeed,
2𝛿𝑎 ⩽ 𝑠 ⇝ max

1⩽𝑗⩽𝑁
|Δ𝑡𝑞̂LW(2𝜋𝑗∕𝑁)|2 ⩽ max

𝜉
{4(𝛿𝑎 sin(𝜉∕2) cos (𝜉∕2))2 + 4(𝛿𝑎 sin (𝜉∕2))4} ⩽ 2𝑠 .

The constant coefficient case in the period setup involves the algebra of circulant matrices, all
of which are uniformly diagonalizable by the Fourier matrix 𝔽. This is a rather special case, in
which von Neumann spectral stability analysis prevails for arbitrarily large systems. Clearly, the
numerical range-based stability results of Sections 3 and 4 offer a more general framework for
studying stability of general non-periodic cases. Examples are outlined below.

5.2 Periodic problems. Variable coefficients

We consider the 1-periodic problem with 𝐶2-variable coefficient 𝑎(⋅){
𝑦𝑡(𝑥, 𝑡) = 𝑎(𝑥)𝑦𝑥(𝑥, 𝑡), (𝑡, 𝑥) ∈ ℝ+ × [0, 1]

𝑦(0, 𝑡) = 𝑦(1, 𝑡).
(5.6)
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The spatial part is discretized using finite-difference method with 𝑎(𝑥)-dependent variable
coefficients, {𝑞𝛼(𝑥)}, and acting on a discrete grid, 𝑥𝜈 = 𝜈Δ𝑥, Δ𝑥 = 1∕𝑁,

𝑑

𝑑𝑡
𝑦(𝑥𝜈, 𝑡) = 𝑄(𝐸)𝑦(𝑥𝜈, 𝑡), 𝜈 = 0, 1, … ,𝑁 − 1,

𝑄(𝐸) ∶=
1

Δ𝑥

𝑟∑
𝛼=−𝓁

𝑞𝛼(𝑥)𝐸
𝛼.

(5.7)

The accuracy requirement places the restriction
∑
𝛼
𝑞𝛼(𝑥) = 0,

∑
𝛼
𝛼𝑞𝛼(𝑥) = 𝑎(𝑥) and so on. The

difference scheme (5.7) amounts to an 𝑁 ×𝑁 system of ODEs with ”slowly varying” circulancy,
that is, 𝑄(𝑥, 𝔼𝑁)𝑖𝑗 changes smoothly in the sense that |𝑄(𝑥, 𝔼𝑁)𝑖+1,𝑗+1 − 𝑄(𝑥, 𝔼𝑁)𝑖𝑗| is bounded
independent of 1∕Δ𝑥.

Δ𝑥
∑
𝛼

𝛼2|𝑞𝛼(𝑥)|𝐶2 ⩽ 𝐾𝑞. (5.8)

Let 𝑄 denote the formal symbol associated with (5.7)

𝑄(𝑥, 𝜉) ∶=
1

Δ𝑥

𝑟∑
𝛼=−𝓁

𝑞𝛼(𝑥)𝑒
𝑖𝛼𝜉.

Assume that the symbol is negative 𝑅𝑒 𝑄(𝑥, 𝜉) ⩽ 0. Then by the sharp Gårding inequality [37,
Theorem 1.1], see also [39], the corresponding difference operator is semi-bounded,13 namely—
there exists a constant 𝜂 > 0 depending on 𝐾𝑞 but otherwise independent of 𝑁, such that

𝑅𝑒 𝑄(𝑥, 𝔼𝑁) ⩽ 2𝜂𝕀𝑁×𝑁. (5.9)

Theorem 4.4 applies to 𝑄(𝑥, 𝔼𝑁) − 𝜂𝕀, implying its power-boundedness under the CFL condition
(1.7),

‖𝑛
𝑠

(
Δ𝑡(𝑄(𝑥, 𝔼𝑁) − 𝜂𝕀)

)‖ ⩽ 1 +
√
2, Δ𝑡 ⋅ 𝑟

(
𝑄(𝑥, 𝔼𝑁)

)
⩽ 𝑠.

Next, we note that the shift −𝜂𝕀 produces only a finite bounded perturbation 𝐵, namely

𝑠(Δ𝑡 ⋅ 𝑄(𝑥, 𝔼𝑁)) = 𝑠(Δ𝑡 ⋅ (𝑄(𝑥, 𝔼𝑁) − 𝜂𝕀) + Δ𝑡 ⋅ 𝜂𝕀
)

= 𝑠(Δ𝑡 ⋅ (𝑄(𝑥, 𝔼𝑁) − 𝜂𝕀)
)
+ Δ𝑡 ⋅ 𝐵,

𝐵 = 𝜂

𝑠∑
𝑘=1

𝑎𝑘𝑘
(
Δ𝑡 ⋅ 𝑄(𝑥, 𝔼𝑁)

)𝑘−1
,

where ‖𝐵‖ ⩽ 𝜂𝐾𝐵 with 𝐾𝐵 =
∑𝑠

𝑘=1
|𝑎𝑘|𝑘𝑘−1𝑠 . We now invoke the fact (due to [30, 59]) that

bounded perturbations of power-bounded matrices remain power bounded,14

‖𝐴𝑛‖ ⩽ 𝐾𝐴 ⇝ (𝐴 + Δ𝑡 ⋅ 𝐵)𝑛 ⩽ 𝐾𝐴𝑒
𝐾𝐴‖𝐵‖𝑡𝑛 , 𝑡𝑛 = 𝑛Δ𝑡.

13 Note that 𝑄(𝑥, 𝔼𝑁) is unbounded, ‖𝑄(𝑥, 𝔼𝑁)‖ = (1∕Δ𝑥).
14 This follows from the identity (𝑋 + 𝑌)𝑛 ≡ 𝑋𝑛 +

∑𝑛−1

𝑘=0
𝑋𝑛−𝑘−1𝑌 (𝑋 + 𝑌)𝑘, 𝑛 = 1, 2, … and using inductionwith (𝑋, 𝑌) =

(𝐴, Δ𝑡 ⋅ 𝐵).
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This implies the desired stability bound

|𝐮(𝑡𝑛)| ⩽ ‖𝑛
𝑠

(
Δ𝑡 ⋅ 𝑄(𝑥, 𝔼𝑁)

)‖ ⋅ |𝐮0| ⩽ (1 +
√
2)𝑒(1+

√
2)𝜂𝐾𝐵𝑡𝑛 |𝐮0|.

We summarize by stating

Proposition 5.4 (Stability—finite difference schemes with variable coefficients). Consider the
fully-discrete finite difference scheme

𝐮𝑛+1 = 𝑠(𝑄(𝑥, 𝔼𝑁))𝐮𝑛, 𝑛 = 0, 1, 2, … , (5.10)

where𝑄(𝑥, 𝔼𝑁) =
1

Δ𝑥

∑
𝛼 𝑞𝛼(𝑥)𝔼

𝛼
𝑁 is a local difference operator, (5.8), and𝑠 is an 𝑠-stage RK stencil

satisfying the imaginary interval condition, (4.6). If the spatial symbol is negative,

𝑅𝑒 𝑄(𝑥, 𝜉) ⩽ 0, 𝑄(𝑥, 𝜉) ∶=
1

Δ𝑥

∑
𝛼

𝑞𝛼(𝑥)𝑒
𝑖𝛼𝜉, (5.11)

then the scheme (5.10) is stable under the CFL condition

max
𝜉

|Δ𝑡 ⋅ 𝑄(𝑥, 𝜉)| ⩽ 𝑠, (5.12)

and the following stability bound holds with 𝐾𝐵 ∶=
∑𝑠

𝑘=1
|𝑎𝑘|𝑘𝑘−1𝑠 ,

|𝐮𝑛|𝓁2 ⩽ (1 +
√
2)𝑒(1+

√
2)𝜂𝐾𝐵𝑡𝑛 |𝐮0|𝓁2 , 𝑛 = 1, 2, … , Δ𝑡 ⋅ 𝑟

(
𝑄(𝑥, 𝔼𝑁)

)
⩽ 𝑠.

Remark 5.5. The stability analysis of difference schemes with variable coefficients in [31, 37]
bounds the norm of ‖𝑠(Δ𝑡𝑄(𝑥, 𝔼𝑁))‖ ⩽ 1 + (Δ𝑡). However, the result is limited to one-step
forward difference in time, 𝕀 + Δ𝑡𝑄(𝑥, 𝔼𝑁). The essence of proposition 5.4 is extension to RK
time-differentiating of higher orders 𝑠 ⩾ 1.

Stability of Fourier method. There are two approaches to handle the stability of difference
approximations of problems with variable coefficients: the von-Neumann spectral analysis based
on sharp Gårding inequality (5.9), or the energy method for example [64, §2]; both approaches
requires local stencils (5.8). An alternative approach for stabilitywith variable coefficients in based
on numerical dissipation [31]. As an extreme example for using our RK stability result, we consider
the Fourier method [33, §4], [17], which is neither local nor dissipative. Set Δ𝑥 = 1∕(2𝑁+1) with an
odd number of (2𝑁 + 1) gridpoints. The Fourier method for (5.6) amounts to (2𝑁+1) × (2𝑁+1)
system of ODEs

𝐲̇(𝑡) = 𝑄(𝔻𝔽
𝑁)𝐲(𝑡),

𝑄(𝔻𝔽
𝑁) = 𝐴𝔻𝔽

𝑁, 𝐴 =

⎡⎢⎢⎢⎢⎢⎣

𝑎(𝑥0)

𝑎(𝑥1)

⋱

𝑎(𝑥2𝑁)

⎤⎥⎥⎥⎥⎥⎦
,

(5.13)
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where the diagonal matrix 𝐴 encodes 𝑎(𝑥) and 𝔻𝔽
𝑁 is the (2𝑁+1) × (2𝑁+1) Fourier differencing

matrix

𝔻𝔽
𝑁 = 𝔽

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−𝑖𝑁 0 … 0

0 −𝑖(𝑁−1) 0 ⋱ ⋮

⋮ ⋱ ⋱ ⋮

⋮ ⋱ 𝑖(𝑁−1) 0

0 … … 0 𝑖𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎦
𝔽∗, 𝔽𝑗𝑘 =

{
𝑒𝑖𝑗𝑘Δ𝑥√
2𝑁 + 1

}2𝑁+1

𝑗,𝑘=1

.

The Fourier difference method is neither local, (𝔻𝔽
𝑁)𝑗𝑘 =

(−1)𝑗−𝑘

2 sin((𝑘−𝑗)Δ𝑥∕2)
fails (5.8), nor dissipative,

and the method is unstable in presence of variable coefficients [16]. However, there is a dif-
ferent weighted-stability. Specifically — for the prototypical case 𝑎(𝑥) = sin(𝑥), there exists a
symmetrizer ℍ𝑁 such that [16, Theorem 2.1]

𝑄(𝔻𝔽
𝑁)

⊤ℍ𝑁 + ℍ𝑁𝑄(𝔻
𝔽
𝑁) ⩽ ℍ𝑁,

where the ℍ𝑁-norm corresponds to the𝐻1-norm

|𝐮|2
ℍ𝑁

= |𝐮|2
𝐻1 , |𝐮|2𝐻𝑠 ∶=

𝑁∑
𝑘=−𝑁

(1 + 𝑘2)
𝑠

2 |𝑢𝑘|2.
Proposition 5.6 (Stability—Fourier method). Consider the time discretization of the Fourier
method,

𝐲̇(𝑡) = 𝑄(𝔻𝔽
𝑁)𝐲(𝑡),

𝑄(𝔻𝔽
𝑁) = 𝐴𝔻𝔽

𝑁, 𝐴 =

⎡⎢⎢⎢⎢⎢⎣

sin(𝑥0)

sin(𝑥1)

⋱

sin(𝑥2𝑁)

⎤⎥⎥⎥⎥⎥⎦
,

using RK methods which satisfy the imaginary interval condition,

𝐮𝑛+1 = 𝑠(Δ𝑡 ⋅ 𝑄(𝔻𝔽
𝑁)

)
𝐮𝑛, 𝑛 = 1, 2, … , Δ𝑡 ⋅ 𝑁 ⩽ 𝑠.

The Fourier method is𝐻1-stable

|𝐮𝑛|ℍ𝑁 ⩽ (1 +
√
2)𝑒𝑡𝑛∕2|𝐮0|ℍ𝑁 . (5.14)

We note that the symmetrizer ℍ𝑁 is not uniformly bounded from below, 𝑁−2𝕀 ⩽ ℍ𝑁 ⩽ 4𝕀, so
𝓁2-stability fails. Converted to 𝓁2-framework, (5.14) yields

|𝐮𝑛|𝓁2 ⩽ 𝑁|𝐮𝑛|ℍ𝑁 ⩽ 𝑁(1 +
√
2)|𝑒𝑡𝑛∕2|𝐮0|ℍ𝑁 = 2𝑁(1 +

√
2)|𝑒𝑡𝑛∕2|𝐮0|𝓁2 .
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5.3 Initial-boundary value problems

We consider the problem (2.5) in the strip{
𝑦𝑡(𝑥, 𝑡) = 𝑎𝑦𝑥(𝑥, 𝑡), 𝑎 > 0, (𝑡, 𝑥) ∈ ℝ+ × [0, 1]

𝑦(1, 𝑡) = 0.

A general stability theory for difference approximations of initial-boundary value problems was
developed in [20, 32]. It is based on normal mode analysis and secures the resolvent-type stabil-
ity of such approximations. The following example shows how to utilize the framework offered
in theorem 4.2, to study the stability of difference approximations of initial-boundary value
problems.

Example 5.4 (One-sided difference). Consider an interior centered differencing augmented with
one-sided difference at the outflow boundary 𝑥 = 0,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑑

𝑑𝑡
𝑦(𝑥0, 𝑡) = 𝑎

𝑦(𝑥1, 𝑡) − 𝑦(𝑥0, 𝑡)

Δ𝑥

𝑑

𝑑𝑡
𝑦(𝑥𝜈, 𝑡) = 𝑎

𝑦(𝑥𝜈+1, 𝑡) − 𝑦(𝑥𝜈−1, 𝑡)

2Δ𝑥
, 𝜈 = 1, 2, … ,𝑁 − 1

𝑦(𝑥𝑁, 𝑡) = 0.

(5.15)

We emphasize that we treat the semi-infinite problem, which amounts to method of lines for
the infinite-vector of unknowns, 𝐲(𝑡) ∶=

(
𝑦(𝑥0, 𝑡), 𝑦(𝑥1, 𝑡), … , 𝑦(𝑥𝑁−1, 𝑡)

)⊤
, governed by the semi-

discrete system

𝐲̇(𝑡) = 𝕃𝑁𝐲(𝑡), 𝕃𝑁 =
𝑎

Δ𝑥

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 … … 0

−1∕2 0 1∕2 ⋱ ⋱ ⋮

0 ⋱ ⋱ ⋱ ⋮

⋮ ⋱ −1∕2 ⋱ ⋱ 0

⋮ ⋱ ⋱ −1∕2 0 1∕2

0 … … 0 −1∕2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.16)

Although thematrix 𝕃𝑁 is not negative, 𝕃⊤𝑁 + 𝕃𝑁 =
𝑎

Δ𝑥

[
−2 1∕2

1∕2 0

]
⊕ 0(𝑁−2)×(𝑁−2), it is weighted

negative with the simple symmetrizer ℍ𝑁 :

𝕃⊤𝑁ℍ𝑁 + ℍ𝑁𝕃𝑁 =
𝑎

Δ𝑥

[
−1 0

0 0

]
⊕ 0(𝑁−2)×(𝑁−2) ⩽ 0, ℍ𝑁 ∶=

[
1∕2 0

0 1

]
⊕ 𝕀(𝑁−2)×(𝑁−2).

Using theorem 4.4, we conclude the stability of time discretization of (5.16) using any RKmethod
satisfying the imaginary interval condition, (4.8). In particular, the fully-discrete schemes based
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on the 𝑠-stage RK time discretization

𝐮𝑛+1 = 𝑠(Δ𝑡𝕃𝑁)𝐮𝑛, 𝑠 = 3, 4, 𝑛 = 1, 2, … ,

are stable under the CFL condition Δ𝑡 ⋅ 𝑟ℍ𝑁(𝕃𝑁) ⩽ 𝑠,

|𝐮(𝑡𝑛)| ⩽ 4(1 +
√
2)|𝐮0|.

Observing the simple bound, 𝑟ℍ𝑁(𝕃𝑁) ⩽
𝑎

Δ𝑥
𝐾ℍ with𝐾ℍ = 2, we endwith CFL condition sufficient

for stability, 𝛿𝑎 ⩽ 𝑠∕2.
The last example depends on verifyingweighted negativity,𝕃⊤𝑁ℍ𝑁 + ℍ𝑁𝕃𝑁 ⩽ 0, which requires

the construction of a proper symmetrizer on a case by case basis. A systematic approach for
studying the weighted negativity for properly designed boundary treatment augmenting centered
difference schemes was developed in [2, 19, 34, 58]. To extend our RK stability framework to larger
classes of difference approximations of initial-boundary values problems requires a more precise
characterization of the weighted numerical range of Teoplitz-like spatial discretizations. This is
left for future study.
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APPENDIX A: THE NUMERICAL RANGE IS (𝟏 +
√
𝟐)-SPECTRAL SET

In his remarkable work [6], Crouzeix proved that 𝑊𝐻(𝐴) is a 𝐾-numerical set with 𝐾 = 11.08

whichwas later improved by Crouzeix & Palencia to𝐾 = 1 +
√
2. We quote here the elegant proof

of Ransford& Schwenninger [50] for Crouzeix&Palencia (1 +
√
2)-bound, based on the following

lemma. In particular, we refer to the recent review [54].

Lemma A.1 (Ransford & Schwenninger (1 +
√
2)-spectral set). Let 𝑇 be a Hilbert space bounded

operator ‖𝑇‖ < ∞, and let Ω be a bounded open set containing the spectrum of 𝑇. Suppose that for
each 𝑓 analytic on Ω, there exists an analytic 𝑔 on Ω such that the following holds (here and below,‖𝑓‖Ω ∶= supΩ |𝑓|):

‖𝑔‖Ω ⩽ ‖𝑓‖Ω and ‖𝑓(𝑇) + 𝑔(𝑇)∗‖ ⩽ 2‖𝑓‖Ω. (A.1)

Then

‖𝑓(𝑇)‖ ⩽ (1 +
√
2)‖𝑓‖Ω

Proof. Let 𝐾 ∶= sup‖𝑓‖Ω=1 ‖𝑓(𝑇)‖. By assumption, for each 𝑓, ‖𝑓‖Ω ⩽ 1, there exists 𝑔 such that
(A.1) holds. Ransford & Schwenninger invoked the identity

𝑓(𝑇)𝑓(𝑇)∗𝑓(𝑇)𝑓(𝑇)∗ ≡ 𝑓(𝑇)
(
𝑓(𝑇) + 𝑔(𝑇)∗

)∗
𝑓(𝑇)𝑓(𝑇)∗ − (𝑓𝑔𝑓)(𝑇)𝑓(𝑇)∗.

A simple exercise shows that the norm of the quantity on the left equals ‖𝑓(𝑇)‖4. Since by (A.1)1,‖(𝑓𝑔𝑓)‖Ω ⩽ 1 hence ‖𝑓𝑔𝑓(𝑇)‖ ⩽ 𝐾, and since by (A.1)2, ‖𝑓(𝑇) + 𝑔(𝑇)∗‖ ⩽ 2, then the expression
on the right does not exceed

‖𝑓(𝑇)‖4 = ‖𝑓(𝑇)𝑓(𝑇)∗𝑓(𝑇)𝑓(𝑇)∗‖
⩽ ‖𝑓(𝑇)‖‖𝑓(𝑇) + 𝑔(𝑇)∗‖‖𝑓(𝑇)‖‖𝑓(𝑇)∗‖ + ‖(𝑓𝑔𝑓)(𝑇)‖‖𝑓(𝑇)∗‖
⩽ 2𝐾3 + 𝐾2.

Hence, 𝐾4 = sup‖𝑓‖Ω=1 ‖𝑓(𝑇)‖4 ⩽ 2𝐾3 + 𝐾2 which implies 𝐾 ⩽ 1 +
√
2. □

Note that the lemma does not involve the numerical range of 𝑇— this comes into play in the
construction of 𝑔 = 𝑔Ω satisfying (A.1), in terms of Cauchy transform,

𝑔Ω(𝑧) ∶=
1

2𝜋𝑖 ∫𝜕Ω
𝑓(𝜁)

𝜁 − 𝑧
𝑑𝜁, 𝑧 ∈ Ω.

The main thrust of the work, originated in [46] and then developed in [6, 10] and finally [7], is to
show that such 𝑔Ω with Ω = 𝑊𝐻(𝑇) satisfies (A.1).
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